Number of the records: 1  

Iron nitrides substituted with transition metals: DFT study of promising systems for anomalous Nernst effect

  1. 1.
    SYSNO ASEP0574285
    Document TypeJ - Journal Article
    R&D Document TypeJournal Article
    Subsidiary JČlánek ve WOS
    TitleIron nitrides substituted with transition metals: DFT study of promising systems for anomalous Nernst effect
    Author(s) Ahn, Kyo-Hoon (FZU-D) ORCID
    Vít, Jakub (FZU-D) ORCID
    Pashchenko, Mariia (FZU-D) ORCID
    Knížek, Karel (FZU-D) RID, ORCID
    Number of authors4
    Article number075123
    Source TitlePhysical Review B. - : American Physical Society - ISSN 2469-9950
    Roč. 108, č. 7 (2023)
    Number of pages8 s.
    Languageeng - English
    CountryUS - United States
    Keywordsspin-orbit coupling ; first-principles calculations ; electronic structure ; density functional calculations
    Subject RIVBM - Solid Matter Physics ; Magnetism
    OECD categoryCondensed matter physics (including formerly solid state physics, supercond.)
    R&D ProjectsGF22-10035K GA ČR - Czech Science Foundation (CSF)
    Research Infrastructuree-INFRA CZ II - 90254 - CESNET, zájmové sdružení právnických osob
    Method of publishingLimited access
    Institutional supportFZU-D - RVO:68378271
    UT WOS001069245400001
    EID SCOPUS85167945951
    DOI10.1103/PhysRevB.108.075123
    AnnotationThe anomalous Nernst effect is studied by ab initio calculations in substituted iron nitrides with antiperovskite structure Fe3M1N and Fe2M1M2N(M1= 4d or 5d, and M2= 3d transition metals), considering the intrinsic Berry curvature-related mechanism depending only on the band structure. The highest absolute anomalous Nernst conductivity (ANC) 8 A K-1m-1 with a negative sign is calculated for ruthenium substituted ferromagnetic phase Fe3RuN. A similar maximum ANC is determined for ferrimagnetic phase Fe2RuCrN, yet the advantage of this doubly substituted phase is that the high ANC values persist over a wider temperature range.
    WorkplaceInstitute of Physics
    ContactKristina Potocká, potocka@fzu.cz, Tel.: 220 318 579
    Year of Publishing2024
    Electronic addresshttps://doi.org/10.1103/PhysRevB.108.075123
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.