Number of the records: 1  

Wireless distributed environmental sensor networks for air pollution measurement-the promise and the current reality

  1. 1.
    0488420 - ÚEM 2018 RIV CH eng J - Journal Article
    Broday, D. M. - Arpaci, A. - Bartoňová, A. - Castell-Balaguer, N. - Cole-Hunter, T. - Dauge, F.R. - Fishbain, B. - Jones, R.L. - Galea, K. - Jovasevic-Stojanovic, M. - Kocman, D. - Martinez-Iniguez, T. - Nieuwenhuijsen, M. - Robinson, J. - Švecová, Vlasta - Thai, P.
    Wireless distributed environmental sensor networks for air pollution measurement-the promise and the current reality.
    Sensors. Roč. 17, č. 10 (2017), s. 2263. E-ISSN 1424-8220
    Institutional support: RVO:68378041
    Keywords : air pollution * in situ field calibration * micro sensing units
    OECD category: Biomaterials (as related to medical implants, devices, sensors)
    Impact factor: 2.475, year: 2017
    Method of publishing: Open access
    https://www.mdpi.com/1424-8220/17/10/2263

    The evaluation of the effects of air pollution on public health and human-wellbeing requires reliable data. Standard air quality monitoring stations provide accurate measurements of airborne pollutant levels, but due to their sparse distribution, they cannot capture accurately the spatial variability of air pollutant concentrations within cities. Dedicated in-depth field campaigns have dense spatial coverage of the measurements but are held for relatively short time periods. Hence, their representativeness is limited. Moreover, the oftentimes integrated measurements represent time-averaged records. Recent advances in communication and sensor technologies enable the deployment of dense grids of Wireless Distributed Environmental Sensor Networks for air quality monitoring, yet their capability to capture urban-scale spatiotemporal pollutant patterns has not been thoroughly examined to date. Here, we summarize our studies on the practicalities of using data streams from sensor nodes for air quality measurement and the required methods to tune the results to different stakeholders and applications. We summarize the results from eight cities across Europe, five sensor technologies-three stationary (with one tested also while moving) and two personal sensor platforms, and eight ambient pollutants. Overall, few sensors showed an exceptional and consistent performance, which can shed light on the fine spatiotemporal urban variability of pollutant concentrations. Stationary sensor nodes were more reliable than personal nodes. In general, the sensor measurements tend to suffer from the interference of various environmental factors and require frequent calibrations.
    Permanent Link: http://hdl.handle.net/11104/0283007

     
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.