Number of the records: 1  

Energy balance and metabolic changes in an overwintering wolf spider, Schizocosa stridulans

  1. 1.
    0532184 - BC 2021 RIV GB eng J - Journal Article
    Potts, L. J. - Košťál, Vladimír - Šimek, Petr - Teets, N. M.
    Energy balance and metabolic changes in an overwintering wolf spider, Schizocosa stridulans.
    Journal of Insect Physiology. Roč. 126, OCT 01 (2020), č. článku 104112. ISSN 0022-1910. E-ISSN 1879-1611
    Institutional support: RVO:60077344
    Keywords : cryoprotectants * energy stores * winter activity
    OECD category: Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology
    Impact factor: 2.354, year: 2020
    Method of publishing: Limited access
    https://www.sciencedirect.com/science/article/pii/S0022191020302560?via%3Dihub

    Winter provides many challenges for terrestrial arthropods, including low temperatures and decreased food availability. Most arthropods are dormant in the winter and resume activity when conditions are favorable, but a select few species remain active during winter. Winter activity is thought to provide a head start on spring growth and reproduction, but few studies have explicitly tested this idea or investigated tradeoffs associated with winter activity. Here, we detail biochemical changes in overwintering winter-active wolf spiders, Schizocosa stridulans, to test the hypothesis that winter activity promotes growth and energy balance. We also quantified levels of putative cryoprotectants throughout winter to test the prediction that winter activity is incompatible with biochemical adaptations for coping with extreme cold. Body mass of juveniles increased 3.5-fold across winter, providing empirical evidence that winter activity promotes growth and therefore advancement of spring reproduction. While spiders maintained protein content throughout most of the winter, lipid content decreased steadily, suggesting either a lack of available prey to maintain lipids, or more likely, an allometric shift in body composition as spiders grew larger. Carbohydrate content showed no clear seasonal trend but also tended to be higher at the beginning of the winter. Finally, we tested the hypothesis that winter activity is incompatible with cryoprotectant accumulation. However, we observed accumulation of glycerol, myo-inositol, and several other cryoprotectants, although levels were lower than those typically observed in overwintering arthropods. Together, our results indicate that winter-active wolf spiders grow during the winter, and while cryoprotectant accumulation was observed in the winter, the modest levels relative to other species could make them susceptible to extreme winter events.
    Permanent Link: http://hdl.handle.net/11104/0315245

     
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.