Number of the records: 1  

Rarefaction and extrapolation with beta diversity under a framework of Hill numbers: The iNEXT.beta3D standardization

  1. 1.
    0576849 - BC 2024 RIV US eng J - Journal Article
    Chao, A. - Thorn, Simon - Chiu, C.-H. - Moyes, F. - Hu, K.-H. - Chazdon, R. L. - Wu, J. - Magnago, L. F. S. - Dornelas, M. - Zelený, D. - Colwell, R. K. - Magurran, A. E.
    Rarefaction and extrapolation with beta diversity under a framework of Hill numbers: The iNEXT.beta3D standardization.
    Ecological Monographs. Roč. 93, č. 4 (2023), č. článku e1588. ISSN 0012-9615. E-ISSN 1557-7015
    Institutional support: RVO:60077344
    Keywords : alpha diversity * assemblage differentiation * beta diversity
    OECD category: Ecology
    Impact factor: 6.1, year: 2022
    Method of publishing: Open access
    https://esajournals.onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1588

    Based on sampling data, we propose a rigorous standardization method to measure and compare beta diversity across datasets. Here beta diversity, which quantifies the extent of among-assemblage differentiation, relies on Whittaker's original multiplicative decomposition scheme, but we use Hill numbers for any diversity order q >= 0. Richness-based beta diversity (q = 0) quantifies the extent of species identity shift, whereas abundance-based (q > 0) beta diversity also quantifies the extent of difference among assemblages in species abundance. We adopt and define the assumptions of a statistical sampling model as the foundation for our approach, treating sampling data as a representative sample taken from an assemblage. The approach makes a clear distinction between the theoretical assemblage level (unknown properties/parameters of the assemblage) and the sampling data level (empirical/observed statistics computed from data). At the assemblage level, beta diversity for N assemblages reflects the interacting effect of the species abundance distribution and spatial/temporal aggregation of individuals in the assemblage. Under independent sampling, observed beta (= gamma/alpha) diversity depends not only on among-assemblage differentiation but also on sampling effort/completeness, which in turn induces dependence of beta on alpha and gamma diversity. How to remove the dependence of richness-based beta diversity on its gamma component (species pool) has been intensely debated. Our approach is to standardize gamma and alpha based on sample coverage (an objective measure of sample completeness). For a single assemblage, the iNEXT method was developed, through interpolation (rarefaction) and extrapolation with Hill numbers, to standardize samples by sampling effort/completeness. Here we adapt the iNEXT standardization to alpha and gamma diversity, that is, alpha and gamma diversity are both assessed at the same level of sample coverage, to formulate standardized, coverage-based beta diversity. This extension of iNEXT to beta diversity required the development of novel concepts and theories, including a formal proof and simulation-based demonstration that the resulting standardized beta diversity removes the dependence of beta diversity on both gamma and alpha values, and thus reflects the pure among-assemblage differentiation. The proposed standardization is illustrated with spatial, temporal, and spatiotemporal datasets, while the freeware iNEXT.beta3D facilitates all computations and graphics.
    Permanent Link: https://hdl.handle.net/11104/0352547

     
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.