Number of the records: 1  

Holocene spatio-temporal patterns of biomass burning in the Bohemian-Bavarian Forest Mountains (Central Europe)

  1. 1.
    SYSNO ASEP0557362
    Document TypeA - Abstract
    R&D Document TypeThe record was not marked in the RIV
    R&D Document TypeNení vybrán druh dokumentu
    TitleHolocene spatio-temporal patterns of biomass burning in the Bohemian-Bavarian Forest Mountains (Central Europe)
    Author(s) Florescu, G. (RO)
    Kuneš, P. (CZ)
    Tinner, W. (CH)
    Heurich, M. (DE)
    Finsinger, W. (FR)
    Moravcová, A. (CZ)
    Dreslerová, Dagmar (ARU-G) RID, SAI, ORCID
    Kletetschka, G. (CZ)
    Vondrák, D. (CZ)
    Carter, V. (US)
    Number of authors10
    Source TitleEGU General Assembly 2021 (vEGU21: Gather Online). - Göttingen : European Geosciences Union, 2021
    Number of pages1 s.
    Publication formOnline - E
    ActionEGU General Assembly Conference 2021
    Event date19.04.2021 - 30.04.2021
    VEvent locationonline
    CountryDE - Germany
    Event typeWRD
    Languageeng - English
    CountryDE - Germany
    Keywordsbiomass burning ; Šumava ; Holocene
    Subject RIVAC - Archeology, Anthropology, Ethnology
    OECD categoryArchaeology
    Institutional supportARU-G - RVO:67985912
    DOI10.5194/egusphere-egu21-13342
    AnnotationLong-term perspectives on disturbance dynamics are important for the conservation of protected areas, yet restoration and conservation strategies in the Bohemian-Bavarian Forest Mountains do not consider the long-term role and patterns of forest fire, which is still deemed a negligible ecosystem disturbance in Central Europe. The scarcity of macroscopic charcoal studies in this area has likely hampered a complete understanding of local fire regime dynamics and its legacies in the present forest structure and composition. Here we used macroscopic charcoal (number, area and morphology of charred particles) and pollen analysis to investigate high resolution spatial and temporal patterns in Holocene fire regimes in the Bavarian-Bohemian Forest. We explored the relationship between changing forest composition dynamics and the influence topography had on spatial patterns of biomass burning. For this, we selected three lacustrine sites (two new, one published), located along a 30 km longitudinal transect within the studied area, at similar elevations in the mixed forest belt, with opposite (north vs. south) aspects. Results showed similar changes in biomass burning, fire frequency and peak magnitude at all sites, with a maximum during the early Holocene when fire resistant taxa (Pinus and Betula) dominated. Fire frequency decreased by half with the expansion of more fire-sensitive taxa (e.g., Picea and Fagus) during the mid-Holocene and reached a second maximum in the late Holocene, parallel with sustained increases in anthropogenic pollen indicators. We found a close north-south correspondence in the succession of fire patterns, i.e., fine-scale changes in biomass burning in the Bavarian Forest site (south-facing catchment) occurred around the same time with those observed at the Bohemian Forest sites (predominantly north-facing catchments), and these changes mirrored the Holocene dynamics of the main forest taxa. For example, the lowest biomass burning and peak magnitude intervals marked the beginning of Picea abies expansion at ~ 9 ka BP, Fagus sylvatica expansion at ~6 ka and Abies alba expansion at ~5 ka BP. Furthermore, we found a direct relationship between the abundance of charred morphotypes of conifer needles and deciduous leaves and the dominance of pine and birch in our pollen records, and a close correspondence between the abundance of non-woody charcoal morphotypes and pollen-derived landscape openness. Non-woody charcoal morphotypes dominated the charcoal records in the Early Holocene at the peak of biomass burning, whereas the abundance of woody morphotypes peaked around 6-8 ka BP and over the last millennium and their proportion in total charcoal influx increased starting 4 ka BP. Our study enables a better understanding of past and present fire regimes in the Bavarian-Bohemian Forest Mountains and highlights the need to consider the effects of fire as part of climate-change forest conservation strategies.
    WorkplaceInstitute of Archaeology (Prague)
    ContactLada Šlesingerová, slesingerova@arup.cas.cz, Tel.: 257 014 412
    Year of Publishing2023
    Electronic addresshttps://meetingorganizer.copernicus.org/EGU21/EGU21-13342.html
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.