Number of the records: 1  

Latest results of Eurofusion plasma-facing components research in the areas of power loading, material erosion and fuel retention

  1. 1.
    SYSNO ASEP0554369
    Document TypeJ - Journal Article
    R&D Document TypeJournal Article
    Subsidiary JČlánek ve WOS
    TitleLatest results of Eurofusion plasma-facing components research in the areas of power loading, material erosion and fuel retention
    Author(s) Reinhart, M. (DE)
    Brezinsek, S. (DE)
    Kirschner, A. (DE)
    Coenen, J. (DE)
    Schwarz-Selinger, T. (DE)
    Schmid, K. (DE)
    Hakola, A. (FI)
    van der Meiden, H. (NL)
    Dejarnac, Renaud (UFP-V) RID, ORCID
    Tsitrone, E. (FR)
    Doerner, R. (US)
    Baldwin, M.J. (US)
    Nishijima, D. (US)
    Number of authors13
    Article number042013
    Source TitleNuclear Fusion. - : Institute of Physics Publishing - ISSN 0029-5515
    Roč. 62, č. 4 (2022)
    Number of pages10 s.
    Languageeng - English
    CountryAT - Austria
    Keywordsdevice psi-2 ; jet-ilw ; tungsten ; divertor ; deposition ; beryllium ; fuel retention ; plasma-surface interaction ; helium-tungsten interaction ; ITER-like monoblocks ; 3D erosion modelling ; plasma-facing components
    Subject RIVBL - Plasma and Gas Discharge Physics
    OECD categoryFluids and plasma physics (including surface physics)
    Method of publishingOpen access
    Institutional supportUFP-V - RVO:61389021
    UT WOS000752591700001
    EID SCOPUS85125596808
    DOI10.1088/1741-4326/ac2a6a
    AnnotationThe interaction between the edge-plasma in a fusion reactor and the surrounding first-wall components is one of the main issues for the realisation of fusion energy power plants. The EUROfusion Work Package on plasma-facing components addresses the key areas of plasma-surface interaction in view of ITER and DEMO operation, which are mostly related to material erosion, surface damage and fuel retention. These aspects are both investigated experimentally (in tokamaks, linear plasma devices and lab experiments) and by modelling. Here, selective results regarding the main research topics are presented: in the area of tungsten (W) surface modifications, the interplay between W fuzz formation and W fuzz erosion depends strongly on the local plasma and surface conditions, as demonstrated by tokamak experiments. Complementary, experimental findings on the dependence of erosion on the surface structure in lab-scale experiments have led to the successful implementation of surface structure effects in numerical modelling. The qualification of ITER-like monoblocks at high fluences of up to 10(31) D m(-2) in linear plasma facilities has shown no visible damages at cold plasma conditions. However, experiments with simultaneous plasma and pulsed heat loading (edge-localized modes simulations) show that synergistic effects can lower the W damage thresholds. Additionally, fuel retention studies show that nitrogen as a plasma impurity increases the fuel retention in W, and that deuterium implanted in the surface of W is capable of stabilizing displacement damages caused by neutron damage. Finally, the implications of these results on ITER and DEMO operation are discussed and an outlook on follow-up experiments is given: the results indicate that there are possible impacts on the ITER divertor lifetime and tritium removal. Other areas like the divertor shaping and the erosion need additional investigations in the future to quantify the impact on ITER and DEMO operation.
    WorkplaceInstitute of Plasma Physics
    ContactVladimíra Kebza, kebza@ipp.cas.cz, Tel.: 266 052 975
    Year of Publishing2023
    Electronic addresshttps://iopscience.iop.org/article/10.1088/1741-4326/ac2a6a
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.