Number of the records: 1  

Structural dependence of crystallization in phosphorus-containing sodium aluminoborosilicate glasses

  1. 1.
    0552884 - ÚMCH 2023 RIV US eng J - Journal Article
    Lu, P. - Kapoor, S. - Kobera, Libor - Brus, Jiří - Goel, A.
    Structural dependence of crystallization in phosphorus-containing sodium aluminoborosilicate glasses.
    Journal of the American Ceramic Society. Roč. 105, č. 4 (2022), s. 2556-2574. ISSN 0002-7820. E-ISSN 1551-2916
    Institutional support: RVO:61389013
    Keywords : crystals/crystallization * glass * glass-ceramics
    OECD category: Polymer science
    Impact factor: 3.9, year: 2022 ; AIS: 0.672, rok: 2022
    Method of publishing: Limited access
    Result website:
    https://ceramics.onlinelibrary.wiley.com/doi/10.1111/jace.18256DOI: https://doi.org/10.1111/jace.18256

    The article reports on the structural dependence of crystallization in Na2O–Al2O3–B2O3–P2O5–SiO2-based glasses over a broad compositional space. The structure of melt-quenched glasses has been investigated using 11B, 27Al, 29Si, and 31P magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy, while the crystallization behavior has been followed using X-ray diffraction and scanning electron microscopy combined with energy dispersive spectroscopy. In general, the integration of phosphate into the sodium aluminoborosilicate network is mainly accomplished via the formation of Al–O–P and B–O–P linkages with the possibility of formation of Si–O–P linkages playing only a minor role. In terms of crystallization, at low concentrations (≤5 mol.%), P2O5 promotes the crystallization of nepheline (NaAlSiO4), while at higher concentrations (≥10 mol.%), it tends to suppress (completely or incompletely depending on the glass chemistry) the crystallization in glasses. When correlating the structure of glasses with their crystallization behavior, the MAS NMR results highlight the importance of the substitution/replacement of Si–O–Al linkages by Al–O–P, Si–O–B, and B–O–P linkages in the suppression of nepheline crystallization in glasses. The results have been discussed in the context of (1) the problem of nepheline crystallization in Hanford high-level waste glasses and (2) designing vitreous waste forms for the immobilization of phosphate-rich dehalogenated Echem salt waste.
    Permanent Link: http://hdl.handle.net/11104/0330409


     
     
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.