Number of the records: 1  

Laser-driven ion acceleration from near-critical Gaussian plasma density profile

  1. 1.
    SYSNO ASEP0547166
    Document TypeJ - Journal Article
    R&D Document TypeJournal Article
    Subsidiary JČlánek ve WOS
    TitleLaser-driven ion acceleration from near-critical Gaussian plasma density profile
    Author(s) Pšikal, Jan (FZU-D) RID, ORCID
    Number of authors1
    Article number064002
    Source TitlePlasma Physics and Controlled Fusion. - : Institute of Physics Publishing - ISSN 0741-3335
    Roč. 63, č. 6 (2021)
    Number of pages11 s.
    Languageeng - English
    CountryGB - United Kingdom
    Keywordsultrashort laser pulse ; ion acceleration ; near-critical density plasma ; particle-in-cell simulation
    Subject RIVBL - Plasma and Gas Discharge Physics
    OECD categoryFluids and plasma physics (including surface physics)
    R&D ProjectsGA18-09560S GA ČR - Czech Science Foundation (CSF)
    LM2018141 GA MŠMT - Ministry of Education, Youth and Sports (MEYS)
    Research Infrastructuree-INFRA CZ - 90140 - CESNET, zájmové sdružení právnických osob
    ELI Beamlines III - 90141 - Fyzikální ústav AV ČR, v. v. i.
    Method of publishingLimited access
    Institutional supportFZU-D - RVO:68378271
    UT WOS000642200600001
    EID SCOPUS85105055110
    DOI10.1088/1361-6587/abf448
    AnnotationIn this paper, we report on multiple phases of efficient laser-driven ion acceleration from near-critical density plasma of Gaussian density profile. Tracking of high-energy accelerated ions in multidimensional particle-in-cell simulations reveals the development of accelerating fields affecting the particles and the contribution of each acceleration phase to final ion energies. While the acceleration of ions occurs in a short time interval when a steep (infinite) density gradient is present, the accelerating field affecting the most energetic ions has unexpected local maxima about 50 fs after the moment when ultrashort (30 fs) laser pulse completely left the target with smooth density gradients.
    WorkplaceInstitute of Physics
    ContactKristina Potocká, potocka@fzu.cz, Tel.: 220 318 579
    Year of Publishing2022
    Electronic addresshttps://doi.org/10.1088/1361-6587/abf448
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.