Number of the records: 1  

Nonlinearities Lead to Qualitative Differences in Population Dynamics of Predator-Prey Systems

  1. 1.
    SYSNO ASEP0392102
    Document TypeJ - Journal Article
    R&D Document TypeJournal Article
    Subsidiary JČlánek ve WOS
    TitleNonlinearities Lead to Qualitative Differences in Population Dynamics of Predator-Prey Systems
    Author(s) Ameixa, Olga (UEK-B) RID
    Messelink, G. J. (NL)
    Kindlmann, Pavel (UEK-B) RID, ORCID, SAI
    Source TitlePLoS ONE. - : Public Library of Science - ISSN 1932-6203
    Roč. 8, č. 4 (2013), e62530-e62530
    Number of pages9 s.
    Languageeng - English
    CountryUS - United States
    Keywordsnonlinear system ; population density ; population dynamics ; predator ; predator prey interaction ; qualitative analysis
    Subject RIVEH - Ecology, Behaviour
    R&D ProjectsED1.1.00/02.0073 GA MŠMT - Ministry of Education, Youth and Sports (MEYS)
    GEVOL/11/E036 GA ČR - Czech Science Foundation (CSF)
    Institutional supportRVO:67179843 - RVO:67179843
    UT WOS000318341400058
    EID SCOPUS84876721506
    DOI10.1371/journal.pone.0062530
    AnnotationSince typically there are many predators feeding on most herbivores in natural communities, understanding multiple predator effects is critical for both community and applied ecology. Experiments of multiple predator effects on prey populations are extremely demanding, as the number of treatments and the amount of labour associated with these experiments increases exponentially with the number of species in question. Therefore, researchers tend to vary only presence/absence of the species and use only one (supposedly realistic) combination of their numbers in experiments. However, nonlinearities in density dependence, functional responses, interactions between natural enemies etc. are typical for such systems, and nonlinear models of population dynamics generally predict qualitatively different results, if initial absolute densities of the species studied differ, even if their relative densities are maintained. Therefore, testing combinations of natural enemies without varying their densities may not be sufficient. Here we test this prediction experimentally. We show that the population dynamics of a system consisting of 2 natural enemies (aphid predator Adalia bipunctata (L.), and aphid parasitoid, Aphidius colemani Viereck) and their shared prey (peach aphid, Myzus persicae Sulzer) are strongly affected by the absolute initial densities of the species in question. Even if their relative densities are kept constant, the natural enemy species or combination thereof that most effectively suppresses the prey may depend on the absolute initial densities used in the experiment. Future empirical studies of multiple predator – one prey interactions should therefore use a two-dimensional array of initial densities of the studied species. Varying only combinations of natural enemies without varying their densities is not sufficient and can lead to misleading results.
    WorkplaceGlobal Change Research Institute
    ContactNikola Šviková, svikova.n@czechglobe.cz, Tel.: 511 192 268
    Year of Publishing2014
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.