Number of the records: 1  

Lipschitz continuous data dependence of sweeping processes in BV spaces

  1. 1.
    0357375 - MÚ 2013 RIV US eng J - Journal Article
    Krejčí, Pavel - Roche, T.
    Lipschitz continuous data dependence of sweeping processes in BV spaces.
    Discrete and Continuous Dynamical Systems-Series B. Roč. 15, č. 3 (2011), s. 637-650. ISSN 1531-3492. E-ISSN 1553-524X
    R&D Projects: GA ČR GAP201/10/2315; GA MŠMT LC06052
    Institutional research plan: CEZ:AV0Z10190503
    Keywords : rate independence * discontinuous sweeping process * Kurzweil integral
    Subject RIV: BA - General Mathematics
    Impact factor: 0.921, year: 2011
    http://aimsciences.org/journals/pdfs.jsp?paperID=5943&mode=full

    For a rate independent sweeping process with a time dependent smooth convex constraint, we prove that the Kurzweil solution for possibly discontinuous inputs depends locally Lipschitz continuously on the data in terms of the BV-norm.
    Permanent Link: http://hdl.handle.net/11104/0195664

     
    FileDownloadSizeCommentaryVersionAccess
    Krejci6.pdf2383 KBPublisher’s postprintrequire
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.