Number of the records: 1  

Plumage iridescence is associated with distinct feather microbiota in a tropical passerine

  1. 1.
    0508658 - ÚBO 2020 RIV GB eng J - Journal Article
    Gvoždíková Javůrková, Veronika - Enbody, E. D. - Kreisinger, J. - Chmel, K. - Mrázek, Jakub - Karubian, J.
    Plumage iridescence is associated with distinct feather microbiota in a tropical passerine.
    Scientific Reports. Roč. 9, č. 1 (2019), č. článku 12921. ISSN 2045-2322. E-ISSN 2045-2322
    Institutional support: RVO:68081766 ; RVO:67985904
    Keywords : degrading bacteria * sexual dichromatism * satin bowerbirds * bird feathers * gland size * color * evolution
    OECD category: Zoology; Microbiology (UZFG-Y)
    Impact factor: 3.998, year: 2019
    Method of publishing: Open access
    https://www.nature.com/articles/s41598-019-49220-y.pdf

    Birds present a stunning diversity of plumage colors that have long fascinated evolutionary ecologists. Although plumage coloration is often linked to sexual selection, it may impact a number of physiological processes, including microbial resistance. At present, the degree to which differences between pigment-based vs. structural plumage coloration may affect the feather microbiota remains unanswered. Using quantitative PCR and DGGE profiling, we investigated feather microbial load, diversity and community structure among two allopatric subspecies of White-shouldered Fairywren, Malurus alboscapulatus that vary in expression of melanin-based vs. structural plumage coloration. We found that microbial load tended to be lower and feather microbial diversity was significantly higher in the plumage of black iridescent males, compared to black matte females and brown individuals. Moreover, black iridescent males had distinct feather microbial communities compared to black matte females and brown individuals. We suggest that distinctive nanostructure properties of iridescent male feathers or different investment in preening influence feather microbiota community composition and load. This study is the first to point to structural plumage coloration as a factor that may significantly regulate feather microbiota. Future work might explore fitness consequences and the role of microorganisms in the evolution of avian sexual dichromatism, with particular reference to iridescence.
    Permanent Link: http://hdl.handle.net/11104/0299503

     
    FileDownloadSizeCommentaryVersionAccess
    0508658.pdf51.5 MBPublisher’s postprintopen-access
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.