Number of the records: 1  

Relative density and isobaric expansivity of cold and supercooled heavy water from 254 to 298 K and up to 100 MPa

  1. 1.
    0509586 - ÚT 2020 RIV US eng J - Journal Article
    Blahut, Aleš - Hykl, Jiří - Peukert, Pavel - Vinš, Václav - Hrubý, Jan … Total 7 authors
    Relative density and isobaric expansivity of cold and supercooled heavy water from 254 to 298 K and up to 100 MPa.
    Journal of Chemical Physics. Roč. 151, č. 3 (2019), č. článku 034505. ISSN 0021-9606. E-ISSN 1089-7690
    R&D Projects: GA ČR(CZ) GA16-02647S; GA ČR(CZ) GA19-05696S
    Institutional support: RVO:61388998
    Keywords : heavy water * supercooling * density measurement * equation of state
    OECD category: Thermodynamics
    Impact factor: 2.991, year: 2019
    Method of publishing: Limited access
    https://aip.scitation.org/doi/10.1063/1.5100604

    A dual-capillary apparatus was developed for highly accurate measurements of density of liquids, including the supercooled liquid region. The device was used to determine the density of supercooled heavy water in the temperature range from 254 K to 298 K at pressures ranging from atmospheric to 100 MPa, relative to density at reference isotherm 298.15 K. The measurements of relative density were reproducible within 10 ppm, and their expanded (k = 2) uncertainty was within 50 ppm. To obtain absolute values of density, thermodynamic integration was performed using recent accurate speed of sound measurements in the stable liquid region. An empirical equation of state (EoS) was developed, giving specific volume as a rational function of pressure and temperature. The new experimental data are represented by EoS within their experimental uncertainty. Gibbs energy was obtained by EoS integration allowing computation of all thermodynamic properties of heavy
    water using Gibbs energy derivatives. Although based on data in relatively narrow temperature and pressure ranges, the developed EoS shows an excellent agreement with literature data for densities, isothermal compressibilities, and isobaric expansivities of deeply supercooled heavy water. The curvature of the thermodynamic surface steeply increases toward low temperatures and low pressures, thus supporting the existence of the hypothesized liquid-liquid coexistence boundary in a close vicinity of existing experimental data.
    Permanent Link: http://hdl.handle.net/11104/0301735

     
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.