Number of the records: 1  

Exocyst complexes multiple functions in plant cells secretory pathways

  1. 1.
    0423950 - ÚEB 2014 RIV GB eng J - Journal Article
    Žárský, Viktor - Kulich, Ivan - Fendrych, Matyáš - Pečenková, Tamara
    Exocyst complexes multiple functions in plant cells secretory pathways.
    Current Opinion in Plant Biology. Roč. 16, č. 6 (2013), s. 726-733. ISSN 1369-5266. E-ISSN 1879-0356
    R&D Projects: GA ČR(CZ) GAP305/11/1629
    Institutional research plan: CEZ:AV0Z50380511
    Keywords : ELECTRON TOMOGRAPHIC ANALYSIS * ARABIDOPSIS-THALIANA * POWDERY MILDEW FUNGUS
    Subject RIV: EB - Genetics ; Molecular Biology
    Impact factor: 9.385, year: 2013
    http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=CCC&DestLinkType=FullRecord&UT=000329009200009

    The exocyst is a complex of proteins mediating first contact (tethering) between secretory vesicles and the target membrane. Discovered in yeast as an effector of RAB and RHO small GTPases, it was also found to function in land plants. Plant cells and tissues rely on targeted exocytosis and this implies that the exocyst is involved in regulation of cell polarity and morphogenesis, including cytokinesis, plasma membrane protein recycling (including PINs, the auxin efflux carriers), cell wall biogenesis, fertilization, stress and biotic interactions including defence against pathogens. The dramatic expansion of the EXO70 subunit gene family, of which individual members are likely responsible for exocyst complex targeting, implies that there are specialized functions of different exocysts with different EXO70s. One of these functions comprises a role in autophagy-related Golgi independent membrane trafficking into the vacuole or apoplast. It is also possible, that some EXO70 paralogues have been recruited into exocyst independent functions. The exocyst has the potential to function as an important regulatory hub to coordinate endomembrane dynamics in plants.
    Permanent Link: http://hdl.handle.net/11104/0229994

     
    FileDownloadSizeCommentaryVersionAccess
    2013_Zarsky_CURRENT OPINION IN PLANT BIOLOGY_726.pdf72.1 MBOtheropen-access
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.