Number of the records: 1
Magnetic temperature-sensitive solid-lipid particles for targeting and killing tumor cells
- 1.0524157 - ÚMCH 2021 RIV CH eng J - Journal Article
Swietek, Malgorzata Anna - Panchuk, R. - Skorokhyd, N. - Černoch, Peter - Finiuk, N. - Klyuchivska, O. - Hrubý, Martin - Molčan, M. - Berger, W. - Trousil, Jiří - Stoika, R. - Horák, Daniel
Magnetic temperature-sensitive solid-lipid particles for targeting and killing tumor cells.
Frontiers in Chemistry. Roč. 8, 9 April (2020), s. 1-18, č. článku 205. ISSN 2296-2646. E-ISSN 2296-2646
R&D Projects: GA ČR(CZ) GA17-04918S; GA ČR(CZ) GA18-07983S; GA MŠMT(CZ) LQ1604; GA MŠMT(CZ) ED1.1.00/02.0109
Institutional support: RVO:61389013
Keywords : magnetic * temperature sensitive * solid lipid particles
OECD category: Polymer science
Impact factor: 5.221, year: 2020
Method of publishing: Open access
https://www.frontiersin.org/articles/10.3389/fchem.2020.00205/full
Magnetic and temperature-sensitive solid lipid particles (mag. SLPs) were prepared in the presence of oleic acid-coated iron oxide (IO-OA) nanoparticles with 1-tetradecanol and poly(ethylene oxide)-block-poly(ε-caprolactone) as lipid and stabilizing surfactant-like agents, respectively. The particles, typically ~850 nm in hydrodynamic size, showed heat dissipation under the applied alternating magnetic field. Cytotoxic activity of the mag.SLPs, non-magnetic SLPs, and iron oxide nanoparticles was compared concerning the mammalian cancer cell lines and their drug-resistant counterparts using trypan blue exclusion test and MTT assay. The mag.SLPs exhibited dose-dependent cytotoxicity against human leukemia cell lines growing in suspension (Jurkat and HL-60/wt), as well as the doxorubicin (Dox)- and vincristine-resistant HL-60 sublines. The mag.SLPs showed higher cytotoxicity toward drug-resistant sublines as compared to Dox. The human glioblastoma cell line U251 growing in a monolayer culture was also sensitive to mag.SLPs cytotoxicity. Staining of U251 cells with the fluorescent dyes Hoechst 33342 and propidium iodide (PI) revealed that mag.SLPs treatment resulted in an increased number of cells with condensed chromatin and/or fragmented nuclei as well as with blebbing of the plasma membranes. While the Hoechst 33342 staining of cell suggested the pro-apoptotic activity of the particles, the PI staining indicated the pro-necrotic changes in the target cells. These conclusions were confirmed by Western blot analysis of apoptosis-related proteins, study of DNA fragmentation (DNA laddering due to the inter-nucleosomal cleavage and DNA comets due to single strand breaks), as well as by FACS analysis of the patterns of cell cycle distribution (pre-G1 phase) and Annexin V/PI staining of the treated Jurkat cells. The induction of apoptosis or necrosis by the particles used to treat Jurkat cells depended on the dose of the particles. Production of the reactive oxygen species (ROS) was proposed as a potential mechanism of mag.SLPs-induced cytotoxicity. Accordingly, hydrogen peroxide and superoxide radical levels in mag.SLPs-treated Jurkat leukemic cells were increased by ~20–40 and ~70%, respectively. In contrast, the non-magnetic SLPs and neat iron oxides did not influence ROS levels significantly. Thus, the developed mag.SLPs can be used for effective killing of human tumor cells, including drug-resistant ones.
Permanent Link: http://hdl.handle.net/11104/0308520
Number of the records: 1