Number of the records: 1  

Adverse effects of Hif1a mutation and maternal diabetes on the offspring heart

  1. 1.
    0491883 - BTÚ 2019 RIV GB eng J - Journal Article
    Čerychová, Radka - Bohuslavová, Romana - Papoušek, František - Sedmera, David - Abaffy, Pavel - Benes, V. - Kolář, František - Pavlínková, Gabriela
    Adverse effects of Hif1a mutation and maternal diabetes on the offspring heart.
    Cardiovascular Diabetology. Roč. 17, MAY 12 2018 (2018), č. článku 68. E-ISSN 1475-2840
    R&D Projects: GA ČR(CZ) GA16-06825S; GA MŠMT(CZ) ED1.1.00/02.0109; GA MŠMT(CZ) LM2015062
    Institutional support: RVO:86652036 ; RVO:67985823
    Keywords : Fetal programming * Maternal diabetes * Hif1a haploinsufficiency
    OECD category: Endocrinology and metabolism (including diabetes, hormones); Physiology (including cytology) (FGU-C)
    Impact factor: 5.948, year: 2018

    Background: Epidemiological studies show that maternal diabetes predisposes offspring to cardiovascular and metabolic disorders. However, the precise mechanisms for the underlying penetrance and disease predisposition remain poorly understood. We examined whether hypoxia-inducible factor 1 alpha, in combination with exposure to a diabetic intrauterine environment, influences the function and molecular structure of the adult offspring heart.
    Methods and results: In a mouse model, we demonstrated that haploinsufficient (Hif1a(+/-)) offspring from a diabetic pregnancy developed left ventricle dysfunction at 12 weeks of age, as manifested by decreased fractional shortening and structural remodeling of the myocardium. Transcriptional profiling by RNA-seq revealed significant transcriptome changes in the left ventricle of diabetes-exposed Hif1a(+/-) offspring associated with development, metabolism, apoptosis, and blood vessel physiology. In contrast, both wild type and Hif1a(+/-) offspring from diabetic pregnancies showed changes in immune system processes and inflammatory responses. Immunohistochemical analyses demonstrated that the combination of haploinsufficiency of Hifia and exposure to maternal diabetes resulted in impaired macrophage infiltration, increased levels of advanced glycation end products, and changes in vascular homeostasis in the adult offspring heart.
    Conclusions: Together our findings provide evidence that a global reduction in Hifia gene dosage increases predisposition of the offspring exposed to maternal diabetes to cardiac dysfunction, and also underscore Hif1a as a critical factor in the fetal programming of adult cardiovascular disease.
    Permanent Link: http://hdl.handle.net/11104/0285496

     
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.