Number of the records: 1  

Catalytic Properties of 3D Graphene-Like Microporous Carbons Synthesized in a Zeolite Template

  1. 1.
    0487734 - ÚFCH JH 2019 RIV US eng J - Journal Article
    Sazama, Petr - Pastvová, Jana - Rizescu, C. - Tirsoaga, A. - Parvulescu, V. I. - Garcia, H. - Kobera, Libor - Seidel, J. - Rathouský, Jiří - Klein, Petr - Jirka, Ivan - Morávková, Jaroslava - Blechta, Václav
    Catalytic Properties of 3D Graphene-Like Microporous Carbons Synthesized in a Zeolite Template.
    ACS Catalysis. Roč. 8, č. 3 (2018), s. 1779-1789. ISSN 2155-5435. E-ISSN 2155-5435
    R&D Projects: GA ČR GA15-12113S; GA MŠMT(CZ) LM2015073; GA MŠMT(CZ) EF16_013/0001821
    Institutional support: RVO:61388955 ; RVO:61389013
    Keywords : catalytic hydrogenation * zeolite-templated carbon * 3D graphene-like microporous carbons
    OECD category: Physical chemistry; Physical chemistry (UMCH-V)
    Impact factor: 12.221, year: 2018

    The inherent properties of a single atomic carbon layer in graphene offer opportunities for the creation of catalytically active centers tailored on a molecular level on a support with high thermal stability and very high specific surface area. We demonstrate that organization of the two-dimensional system of the carbon layer into three-dimensional (3D) graphene-like catalytic materials with the connectivity of a pore network providing good accessibility to the active centers allows the preparation of catalytic materials that exploit the properties of graphene. In this study, 3D graphene-like microporous carbons, denoted as β-carbon and Y-carbon, were synthesized by nanocasting of beta (*BEA) and faujasite (FAU) zeolite templates. Structural analyses show that the materials are characterized by 3D-assembled and highly stable single-atom graphene layers that form an open porous system resembling the regular channel system of the zeolites with a specific surface area comparable to the surface area of graphene. The materials effectively catalyze the hydrogenation of alkenes, alkynes, and cycloalkenes into the corresponding alkanes and cycloalkanes. The materials facilitate catalytic intramolecular rearrangements, including the selective isomerization of double bonds and branching of linear chains, as well as stereoselective isomerization of unsaturated hydrocarbons.
    Permanent Link: http://hdl.handle.net/11104/0282367

     
    FileDownloadSizeCommentaryVersionAccess
    0487734.pdf6630 KBPublisher’s postprintrequire
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.