Number of the records: 1  

Loebl-Komlós-Sós Conjecture: dense case

  1. 1.
    0451115 - MÚ 2017 RIV US eng J - Journal Article
    Hladký, Jan - Piguet, Diana
    Loebl-Komlós-Sós Conjecture: dense case.
    Journal of Combinatorial Theory. B. Roč. 116, January (2016), s. 123-190. ISSN 0095-8956. E-ISSN 1096-0902
    R&D Projects: GA MŠMT(CZ) 1M0545
    Institutional support: RVO:67985840 ; RVO:67985807
    Keywords : Loebl-Komlós-Sós Conjecture * Ramsey number of trees
    Subject RIV: BA - General Mathematics
    Impact factor: 0.829, year: 2016
    Result website:
    http://www.sciencedirect.com/science/article/pii/S009589561500088XDOI: https://doi.org/10.1016/j.jctb.2015.07.004

    We prove a version of the Loebl-Komlos-Sos Conjecture for dense graphs. For each $q>0$ there exists a number $n_0 \in \mathbb N$ such that for each $n>n_0$ and $k>qn$ the following holds: if $G$ is a graph of order $n$ with at least $\frac{n}{2}$ vertices of degree at least $k$, then each tree of order $k+1$ is a subgraph of $G$.
    Permanent Link: http://hdl.handle.net/11104/0252291
     
    FileDownloadSizeCommentaryVersionAccess
    a0451115.pdf111.2 MBPublisher’s postprintrequire
    Hladky.pdf181.1 MBPublisher’s postprintrequire
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.