- Logic versus Approximation. Essays Dedicated to Michael M. Richter on…
Number of the records: 1  

Logic versus Approximation. Essays Dedicated to Michael M. Richter on the Occasion of his 65th Birthday

  1. 1.
    0103380 - UIVT-O 20040121 RIV DE eng M - Monography Chapter
    Hájek, Petr
    A True Unprovable Formula of Fuzzy Predicate Logic.
    [Pravdivá nedokazatelná formule fuzzy predikátové logiky.]
    Logic versus Approximation. Essays Dedicated to Michael M. Richter on the Occasion of his 65th Birthday. Berlin: Springer, 2004 - (Lenski, W.), s. 1-5. Lecture Notes in Computer Science, 3075. ISBN 3-540-22562-5
    R&D Projects: GA MŠMT LN00A056
    Keywords : fuzzy logic * product logic * incompleteness * standard semantics
    Subject RIV: BA - General Mathematics
    DOI: https://doi.org/10.1007/978-3-540-25967-1_1

    We construct a formula true in all models of the product fuzzy predicate logic over the standard product algebra on the unit real interval but unprovable in the product fuzzy logic (and hence having truth value less than 1 in some model over a non-standard linearly ordered product algebra). Gödel s construction of a true unprovable formula of arithmetic is heavily used.

    Konstruuje se formula pravdivá ve všech modelech produktové fuzzy predikátové logiky nad standardní produktovou algebrou na jednotkovém reálném intervalu ale nedokazatelná v produktové fuzzy logice (a tedy mající hodnotu menší než 1 v nějakém nestardantním modelu). Gödelova konstrukce pravdivé nedokazatelné formule aritmetiky je podstatně využita.
    Permanent Link: http://hdl.handle.net/11104/0010689
     
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.