Number of the records: 1  

Postglacial adaptations enabled colonization and quasi-clonal dispersal of ammonia-oxidizing archaea in modern European large lakes

  1. 1.
    0583913 - BC 2024 RIV US eng J - Journal Article
    Ngugi, D.K. - Salcher, Michaela M. - Andrei, A.S. - Ghai, Rohit - Klotz, F. - Chiriac, Maria-Cecilia - Ionescu, D. - Buesing, P. - Grossart, H.P. - Xing, P. - Priscu, J. C. - Alymkulov, S. - Pester, M.
    Postglacial adaptations enabled colonization and quasi-clonal dispersal of ammonia-oxidizing archaea in modern European large lakes.
    Science Advances. Roč. 9, č. 5 (2023), č. článku eadc9392. ISSN 2375-2548. E-ISSN 2375-2548
    Institutional support: RVO:60077344
    Keywords : multiple sequence alignment * phylogenetic reconstruction * sulfolobus
    OECD category: Microbiology
    Impact factor: 13.6, year: 2022
    Method of publishing: Open access
    https://doi.org/10.1126/sciadv.adc9392

    Ammonia-oxidizing archaea (AOA) play a key role in the aquatic nitrogen cycle. Their genetic diversity is viewed as the outcome of evolutionary processes that shaped ancestral transition from terrestrial to marine habitats. However, current genome-wide insights into AOA evolution rarely consider brackish and freshwater representatives or provide their divergence timeline in lacustrine systems. An unbiased global assessment of lacustrine AOA diversity is critical for understanding their origins, dispersal mechanisms, and ecosystem roles. Here, we leveraged continental-scale metagenomics to document that AOA species diversity in freshwater systems is remarkably low compared to marine environments. We show that the uncultured freshwater AOA, 'Candidatus Nitrosopumilus limneticus,' is ubiquitous and genotypically static in various large European lakes where it evolved 13 million years ago. We find that extensive proteome remodeling was a key innovation for freshwater colonization of AOA. These findings reveal the genetic diversity and adaptive mechanisms of a keystone species that has survived clonally in lakes for millennia.
    Permanent Link: https://hdl.handle.net/11104/0351891

     
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.