Number of the records: 1  

Analysis of processing efficiency, surface, and bulk chemistry, and nanomechanical properties of the Monel® alloy 400 after ultrashort pulsed laser ablation

  1. 1.
    0583070 - ÚPT 2025 RIV US eng J - Journal Article
    Ronoh, K. - Novotný, Jan - Mrňa, Libor - Knápek, Alexandr - Sobola, Dinara
    Analysis of processing efficiency, surface, and bulk chemistry, and nanomechanical properties of the Monel® alloy 400 after ultrashort pulsed laser ablation.
    Materials Research Express. Roč. 11, č. 1 (2024), č. článku 016514. E-ISSN 2053-1591
    Institutional support: RVO:68081731 ; RVO:68081723
    Keywords : laser ablation * ablation efficiency * EDX * XPS * nanoindentation * Monel (R) alloy 400
    Impact factor: 2.3, year: 2022
    Method of publishing: Open access
    https://iopscience.iop.org/article/10.1088/2053-1591/ad184b

    Monel (R) alloy 400 has excellent corrosion resistance and finds applications in marine industries. The processing of marine components requires high processing efficiency and a quality finish. Hence, this research aims to investigate the effects of the laser processing parameters such as laser fluence, scanning velocity, hatching distance, and the scanning pass on the ablation rates and efficiency, chemistry, and nanomechanical properties of the Monel (R) alloy 400 after pulsed picosecond (ps) laser ablation. From the experimental findings, the ablation depth increases as the laser fluence increases while decreasing as the scanning velocity increases. Surface roughness was noted to increase as the laser fluence increased. The findings demonstrated that the ablation rate increases as laser fluence increases while ablation efficiency decreases. Energy dispersive x-ray spectroscopy (EDX) showed that the elemental composition of laser-ablated zones is almost similar to that of the polished sample. X-ray spectroscopy (XPS) shows that the outer layer on the surface of Monel (R) alloy 400 is composed of NiO and CuO. The hardness and Young's modulus of the laser-processed alloy were found to be less than those of the bulk material. This study can be used to establish optimal processing parameters for the ultrafast ps laser processing of materials to achieve high ablation efficiency with a high-quality surface finish for industrial applications.
    Permanent Link: https://hdl.handle.net/11104/0351074

     
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.