Number of the records: 1  

W18O49 Nanowhiskers Decorating SiO2 Nanofibers: Lessons from In Situ SEM/TEM Growth to Large Scale Synthesis and Fundamental Structural Understanding

  1. 1.
    0580771 - ÚPT 2025 RIV US eng J - Journal Article
    Kundrát, V. - Bukvišová, K. - Novák, L. - Průcha, Lukáš - Houben, L. - Zálešák, J. - Vukusic, A. - Holec, D. - Tenne, R. - Pinkas, J.
    W18O49 Nanowhiskers Decorating SiO2 Nanofibers: Lessons from In Situ SEM/TEM Growth to Large Scale Synthesis and Fundamental Structural Understanding.
    Crystal Growth & Design. Roč. 24, č. 1 (2024), s. 378-390. ISSN 1528-7483. E-ISSN 1528-7505
    Institutional support: RVO:68081731
    Keywords : electrospinning * tungsten oxide * nanowhiskers * nanofibers * W18O49
    OECD category: Inorganic and nuclear chemistry
    Impact factor: 3.8, year: 2022
    Method of publishing: Open access
    https://pubs.acs.org/doi/10.1021/acs.cgd.3c01094

    Tungsten suboxide W18O49 nanowhiskers are a material of great interest due to their potential high-end applications in electronics, near-infrared light shielding, catalysis, and gas sensing. The present study introduces three main approaches for the fundamental understanding of W18O49 nanowhisker growth and structure. First, W18O49 nanowhiskers were grown from gamma-WO3/a-SiO2 nanofibers in situ in a scanning electron microscope (SEM) utilizing a specially designed microreactor (mu Reactor). It was found that irradiation by the electron beam slows the growth kinetics of the W18O49 nanowhisker, markedly. Following this, an in situ TEM study led to some new fundamental understanding of the growth mode of the crystal shear planes in the W18O49 nanowhisker and the formation of a domain (bundle) structure. High-resolution scanning transmission electron microscopy analysis of a cross-sectioned W18O49 nanowhisker revealed the well-documented pentagonal Magnéli columns and hexagonal channel characteristics for this phase. Furthermore, a highly crystalline and oriented domain structure and previously unreported mixed structural arrangement of tungsten oxide polyhedrons were analyzed. The tungsten oxide phases found in the cross section of the W18O49 nanowhisker were analyzed by nanodiffraction and electron energy loss spectroscopy (EELS), which were discussed and compared in light of theoretical calculations based on the density functional theory method. Finally, the knowledge gained from the in situ SEM and TEM experiments was valorized in developing a multigram synthesis of W18O49/a-SiO2 urchin-like nanofibers in a flow reactor.
    Permanent Link: https://hdl.handle.net/11104/0349528

     
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.