Number of the records: 1  

Mshpy23: a user-friendly, parameterized model of magnetosheath conditions

  1. 1.
    0580261 - ÚFA 2025 RIV CN eng J - Journal Article
    Jung, J. - Connor, H. K. - Dimmock, A.P. - Sembay, S. - Read, A. M. - Souček, Jan
    Mshpy23: a user-friendly, parameterized model of magnetosheath conditions.
    Earth and Planetary Physics. Roč. 8, č. 1 (2024), s. 89-104. ISSN 2096-3955
    Institutional support: RVO:68378289
    Keywords : magnetosheath * python * modeling
    OECD category: Fluids and plasma physics (including surface physics)
    Impact factor: 2.9, year: 2022
    Method of publishing: Open access
    https://www.eppcgs.org/en/article/doi/10.26464/epp2023065

    Lunar Environment heliospheric X-ray Imager (LEXI) and Solar wind−Magnetosphere−Ionosphere Link Explorer (SMILE) will observe magnetosheath and its boundary motion in soft X-rays for understanding magnetopause reconnection modes under various solar wind conditions after their respective launches in 2024 and 2025. Magnetosheath conditions, namely, plasma density, velocity, and temperature, are key parameters for predicting and analyzing soft X-ray images from the LEXI and SMILE missions. We developed a user-friendly model of magnetosheath that parameterizes number density, velocity, temperature, and magnetic field by utilizing the global Magnetohydrodynamics (MHD) model as well as the pre-existing gas-dynamic and analytic models. Using this parameterized magnetosheath model, scientists can easily reconstruct expected soft X-ray images and utilize them for analysis of observed images of LEXI and SMILE without simulating the complicated global magnetosphere models. First, we created an MHD-based magnetosheath model by running a total of 14 OpenGGCM global MHD simulations under 7 solar wind densities (1, 5, 10, 15, 20, 25, and 30 cm) and 2 interplanetary magnetic field components (± 4 nT), and then parameterizing the results in new magnetosheath conditions. We compared the magnetosheath model result with THEMIS statistical data and it showed good agreement with a weighted Pearson correlation coefficient greater than 0.77, especially for plasma density and plasma velocity. Second, we compiled a suite of magnetosheath models incorporating previous magnetosheath models (gas-dynamic, analytic), and did two case studies to test the performance. The MHD-based model was comparable to or better than the previous models while providing self-consistency among the magnetosheath parameters. Third, we constructed a tool to calculate a soft X-ray image from any given vantage point, which can support the planning and data analysis of the aforementioned LEXI and SMILE missions. A release of the code has been uploaded to a Github repository.
    Permanent Link: https://hdl.handle.net/11104/0349260

     
    FileDownloadSizeCommentaryVersionAccess
    0580261_Earth and Plan Physics_Souček_2024.pdf11.8 MBPublisher’s postprintrequire
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.