Number of the records: 1  

Bacterial and plant community successional pathways in glacier forefields of the Western Himalaya

  1. 1.
    0579575 - BÚ 2024 RIV NL eng J - Journal Article
    Ruka, Adam Taylor - Čapková, Kateřina - Řeháková, Klára - Angel, Roey - Chroňáková, Alica - Kopecký, Martin - Macek, Martin - Dvorský, Miroslav - Doležal, Jiří
    Bacterial and plant community successional pathways in glacier forefields of the Western Himalaya.
    European Journal of Soil Biology. Roč. 119, NOV-DEC 2023 (2023), č. článku 103565. ISSN 1164-5563. E-ISSN 1778-3615
    R&D Projects: GA ČR(CZ) GA21-26883S; GA ČR(CZ) GA21-04987S; GA MŠMT(CZ) LM2015075; GA MŠMT(CZ) EF16_013/0001782
    Institutional support: RVO:67985939 ; RVO:60077344
    Keywords : succession * climate change * alpine * Himalaya * soil bacteria
    OECD category: Microbiology; Ecology (BC-A)
    Impact factor: 4.2, year: 2022
    Method of publishing: Limited access
    https://doi.org/10.1016/j.ejsobi.2023.103565

    Glacier chronosequences offer a unique opportunity to observe primary successional patterns and assess the interaction between biological communities and abiotic conditions. Bacteria are one of the first organisms to colonize such ecosystems, yet factors determining their distribution and diversity are still in need of understanding. In this study, we investigated the associated abiotic and biotic factors related to bacterial communities across post-glacial moraines at two localities in the Ladakh region of the Western Himalaya which differed in elevation and climate. By measuring soil chemistry, plant, biological soil crust, and bacterial community composition while accounting for moraine age and topography, we reveal the successional paths of multiple trophic levels at the highest elevation glacier forefields known to be studied. Biological soil crust communities followed a trajectory of being dominated by the order Chroococcales before transitioning to filamentous Nostocales and Oscillatoriales and eventually decreasing in cover as plants colonize the area. Using variation partitioning, we found bacterial communities in the higher locality, Tso Moriri (5800 m), were more associated with soil conditions, while at the lower location, Nubra (5150-5400 m), bacterial communities were more coupled with plant community composition. Furthermore, using generalized linear models, bacterial family richness was found to be significantly correlated with plant species richness, however, topography was also significant, indicating geomorphological depressions or gullies at the bottom of moraines potentially harbor higher bacterial richness prior to the advanced colonization of plants. These results suggest the community structure and successional pathways of bacteria and plants in glacier forefields are influenced by differing biotic and abiotic factors at different geographical locations and provides a local framework for the future of deglaciated environments.
    Permanent Link: https://hdl.handle.net/11104/0348385

     
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.