Number of the records: 1  

Metabolic switch from fatty acid oxidation to glycolysis in knock-in mouse model of Barth syndrome

  1. 1.
    0576227 - ÚMG 2024 RIV US eng J - Journal Article
    Chowdhury, A. - Boshnakovska, A. - Aich, A. - Methi, A. - Leon, A. M. V. - Silbern, I. - Luechtenborg, C. - Cyganek, L. - Procházka, Jan - Sedláček, Radislav - Lindovský, Jiří - Wachs, D. - Nichtová, Zuzana - Zudová, Dagmar - Koubková, Gizela - Fischer, A. - Urlaub, H. - Bruegger, B. - Katschinski, D. M. - Dudek, J. - Rehling, P.
    Metabolic switch from fatty acid oxidation to glycolysis in knock-in mouse model of Barth syndrome.
    EMBO Molecular Medicine. Roč. 15, č. 9 (2023), č. článku e17399. ISSN 1757-4676. E-ISSN 1757-4684
    R&D Projects: GA MŠMT(CZ) LM2018126; GA MŠMT LM2023036; GA MŠMT EF18_046/0015861
    Institutional support: RVO:68378050
    Keywords : Barth syndrome * cardiolipin * cardiomyopathy * mitochondria * tafazzin
    OECD category: Biochemistry and molecular biology
    Impact factor: 11.1, year: 2022
    Method of publishing: Open access
    https://www.embopress.org/doi/full/10.15252/emmm.202317399

    Mitochondria are central for cellular metabolism and energy supply. Barth syndrome (BTHS) is a severe disorder, due to dysfunction of the mitochondrial cardiolipin acyl transferase tafazzin. Altered cardiolipin remodeling affects mitochondrial inner membrane organization and function of membrane proteins such as transporters and the oxidative phosphorylation (OXPHOS) system. Here, we describe a mouse model that carries a G197V exchange in tafazzin, corresponding to BTHS patients. TAZ(G197V) mice recapitulate disease-specific pathology including cardiac dysfunction and reduced oxidative phosphorylation. We show that mutant mitochondria display defective fatty acid-driven oxidative phosphorylation due to reduced levels of carnitine palmitoyl transferases. A metabolic switch in ATP production from OXPHOS to glycolysis is apparent in mouse heart and patient iPSC cell-derived cardiomyocytes. An increase in glycolytic ATP production inactivates AMPK causing altered metabolic signaling in TAZ(G197V). Treatment of mutant cells with AMPK activator reestablishes fatty acid-driven OXPHOS and protects mice against cardiac dysfunction.
    Permanent Link: https://hdl.handle.net/11104/0346207

     
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.