Number of the records: 1  

Activation of molecular oxygen over binuclear iron centers in Al-rich *BEA zeolite

  1. 1.
    0572765 - ÚFCH JH 2024 RIV NL eng J - Journal Article
    Kornas, Agnieszka - Tabor, Edyta - Wierzbicki, D. K. - Olszówka, Joanna Elżbieta - Pilař, Radim - Dědeček, Jiří - Sliwa, M. - Jirglová, Hana - Sklenák, Štěpán - Rutkowska-Żbik, D. - Mlekodaj, Kinga
    Activation of molecular oxygen over binuclear iron centers in Al-rich *BEA zeolite.
    Applied Catalysis B - Environmental. Roč. 336, NOV 2023 (2023), č. článku 122915. ISSN 0926-3373. E-ISSN 1873-3883
    R&D Projects: GA ČR(CZ) GA19-02901S; GA ČR(CZ) GF21-45567L
    Research Infrastructure: e-INFRA CZ - 90140
    Institutional support: RVO:61388955
    Keywords : Al-rich *BEA * Distant binuclear iron centers * Methane oxidation * Molecular oxygen splitting * Template-free synthesis
    OECD category: Physical chemistry
    Impact factor: 22.1, year: 2022
    Method of publishing: Limited access

    Here, we present the unique redox properties of distant binuclear iron centers in Al-rich *BEA zeolite in O2 splitting and CH4 oxidation. Al-rich *BEA was obtained via a template-free synthesis procedure guaranteeing low-defected structure and a high fraction of Al-pairs enabling stabilization of binuclear iron centers. By employment of a multispectroscopic in-situ approach (Mössbauer and X-ray absorption) the formation of active oxygen over binuclear iron centers in Al-rich *BEA was confirmed and subsequent CH4 oxidation was studied. Spontaneous release of the reaction products to the gas stream, representing a significant advantage of the studied system, was proved by the results of in-situ FTIR and mass spectrometry. This is the first experimental proof of the formation of fully-functioned binuclear iron centers (able to split O2, stabilize active oxygen forms, and subsequently oxidize CH4) in zeolite of *BEA topology.
    Permanent Link: https://hdl.handle.net/11104/0343339

     
    FileDownloadSizeCommentaryVersionAccess
    0572765.pdf03.1 MBPublisher’s postprintrequire
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.