Number of the records: 1  

Long-term rise in riverine dissolved organic carbon concentration is predicted by electrolyte solubility theory

  1. 1.
    0571949 - ÚVGZ 2024 RIV US eng J - Journal Article
    Monteith, D. T. - Henrys, Peter A. - Hruška, Jakub - de Wit, Heleen A. - Krám, Pavel - Moldan, F. - Posch, M. - Räike, A. - Stoddard, J. L. - Shilland, E.M. - Pereira, M.G. - Evans, Ch.D.
    Long-term rise in riverine dissolved organic carbon concentration is predicted by electrolyte solubility theory.
    Science Advances. Roč. 9, č. 3 (2023), č. článku eade3491. ISSN 2375-2548. E-ISSN 2375-2548
    R&D Projects: GA ČR(CZ) GC21-22810J
    Research Infrastructure: CzeCOS IV - 90248
    Institutional support: RVO:86652079
    Keywords : headwater catchment * streamwater * atmospheric deposition * electric conductivity
    OECD category: Environmental sciences (social aspects to be 5.7)
    Impact factor: 13.6, year: 2022
    Method of publishing: Open access
    https://www.science.org/doi/10.1126/sciadv.ade3491

    The riverine dissolved organic carbon (DOC) flux is of similar magnitude to the terrestrial sink for atmospheric CO2 , but the factors controlling it remain poorly determined and are largely absent from Earth system models (ESMs). Here, we show, for a range of European headwater catchments, that electrolyte solubility theory explains how declining precipitation ionic strength (IS) has increased the dissolution of thermally moderated pools of soluble soil organic matter (OM), while hydrological conditions govern the proportion of this OM entering the aquatic system. Solubility will continue to rise exponentially with declining IS until pollutant ion deposition fully flattens out under clean air policies. Future DOC export will increasingly depend on rates of warming and any directional changes to the intensity and seasonality of precipitation and marine ion deposition. Our findings provide a firm foundation for incorporating the processes dominating change in this component of the global carbon cycle in ESMs.
    Permanent Link: https://hdl.handle.net/11104/0342918

     
    FileDownloadSizeCommentaryVersionAccess
    sciadv.ade3491.pdf61.3 MBPublisher’s postprintopen-access
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.