Number of the records: 1  

Kilotesla plasmoid formation by a trapped relativistic laser beam

  1. 1.
    0567695 - FZÚ 2023 RIV US eng J - Journal Article
    Ehret, M. - Kochetkov, Yu. - Abe, Y. - Law, K.F.F. - Bukharskii, N. - Stepanischev, V. - Fujioka, S. - Humiéres, E. D. - Zielbauer, B. - Bagnoud, V. - Schaumann, G. - Somekawa, T. - Roth, M. - Tikhonchuk, Vladimir - Santos, J.J. - Korneev, Ph.
    Kilotesla plasmoid formation by a trapped relativistic laser beam.
    Physical Review E. Roč. 106, č. 4 (2022), č. článku 045211. ISSN 2470-0045. E-ISSN 2470-0053
    Institutional support: RVO:68378271
    Keywords : ultrahigh magnetic-fields * compression * driven * generation
    OECD category: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
    Impact factor: 2.4, year: 2022 ; AIS: 0.687, rok: 2022
    Method of publishing: Limited access
    Result website:
    https://doi.org/10.1103/PhysRevE.106.045211DOI: https://doi.org/10.1103/PhysRevE.106.045211

    A strong quasistationary magnetic field is generated in hollow targets with curved internal surface under the action of a relativistically intense picosecond laser pulse. Experimental data evidence the formation of quasistationary strongly magnetized plasma structures decaying on a hundred picoseconds timescale, with the magnetic field strength of the kilotesla scale. Numerical simulations unravel the importance of transient processes during the magnetic field generation and suggest the existence of fast and slow regimes of plasmoid evolution depending on the interaction parameters. The proposed setup is suited for perspective highly magnetized plasma application and fundamental studies.
    Permanent Link: https://hdl.handle.net/11104/0338927
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.