Number of the records: 1  

Effective perspiration is essential to uphold the stability of zero-gap MEA-based cathodes used in CO2 electrolysers

  1. 1.
    0566622 - ÚFCH JH 2024 RIV GB eng J - Journal Article
    Hu, H. - Kong, Y. - Liu, M. - Kolivoška, Viliam - Rudnev, Alexander V. - Hou, Y. - Erni, R. - Vesztergom, S. - Broekmann, P.
    Effective perspiration is essential to uphold the stability of zero-gap MEA-based cathodes used in CO2 electrolysers.
    Journal of Materials Chemistry A. Roč. 11, č. 10 (2023), s. 5083-5094. ISSN 2050-7488. E-ISSN 2050-7496
    R&D Projects: GA ČR(CZ) GA18-09848S; GA ČR(CZ) GA23-07292S
    Institutional support: RVO:61388955
    Keywords : reduction * electrochemical CO2 * conversion
    OECD category: Physical chemistry
    Impact factor: 11.9, year: 2022
    Method of publishing: Open access

    The application of gas diffusion electrodes (GDEs) for the electrochemical reduction of CO2 to value-added products creates the possibility of achieving current densities of a few hundred mA cm(-2). To achieve stable operation at such high reaction rates remains, however, a challenging task, due to the flooding of the GDE. In order to mitigate flooding in a zero-gap membrane-electrode assembly (MEA) configuration, paths for effective electrolyte perspiration inside the GDE structure have to be kept open during the electrolysis process. Here we demonstrate that apart from the operational parameters of the electrolysis and the structural properties of the supporting gas diffusion layers, also the chemical composition of the applied catalyst inks can play a decisive role in the electrolyte management of GDEs used for CO2 electroreduction. In particular, the presence of excess amounts of polymeric capping agents (used to stabilize the catalyst nanoparticles) can lead to a blockage of micropores, which hinders perspiration and initiates the flooding of the microporous layer. Here we use a novel ICP-MS analysis-based approach to quantitatively monitor the amount of perspired electrolyte that exits a GDE-based CO2 electrolyser, and we show a direct correlation between the break-down of effective perspiration and the appearance of flooding-the latter ultimately leading to a loss of electrolyser stability. We recommend the use of an ultracentrifugation-based approach by which catalyst inks containing no excess amount of polymeric capping agents can be formulated. Using these inks, the stability of electrolyses can be ensured for much longer times.
    Permanent Link: https://hdl.handle.net/11104/0337941

     
    FileDownloadSizeCommentaryVersionAccess
    0566622.pdf06.6 MBopen accessPublisher’s postprintopen-access
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.