Number of the records: 1  

Benchmark Dynamics of Dipolar Molecular Rotors in Fluorinated Metal-Organic Frameworks

  1. 1.
    0566112 - ÚOCHB 2024 RIV DE eng J - Journal Article
    Perego, J. - Bezuidenhout, C. X. - Bracco, S. - Piva, S. - Prando, G. - Aloisi, C. - Carretta, P. - Kaleta, Jiří - Le, Thi Phuong - Sozzani, P. - Daolio, A. - Comotti, A.
    Benchmark Dynamics of Dipolar Molecular Rotors in Fluorinated Metal-Organic Frameworks.
    Angewandte Chemie - International Edition. Roč. 62, č. 5 (2023), č. článku e202215893. ISSN 1433-7851. E-ISSN 1521-3773
    R&D Projects: GA ČR(CZ) GA20-13745S
    Institutional support: RVO:61388963
    Keywords : crystal engineering * fluorine * metal organic frameworks * molecular dynamics * molecular rotor
    OECD category: Organic chemistry
    Impact factor: 16.6, year: 2022
    Method of publishing: Limited access
    https://doi.org/10.1002/anie.202215893

    Fluorinated Metal-Organic Frameworks (MOFs), comprising a wheel-shaped ligand with geminal rotating fluorine atoms, produced benchmark mobility of correlated dipolar rotors at 2 K, with practically null activation energy (Ea=17 cal mol−1). 1H T1 NMR revealed multiple relaxation phenomena due to the exchange among correlated dipole-rotor configurations. Synchrotron radiation X-ray diffraction at 4 K, Density Functional Theory, Molecular Dynamics and phonon calculations showed the fluid landscape and pointed out a cascade mechanism converting dipole configurations into each other. Gas accessibility, shown by hyperpolarized-Xe NMR, allowed for chemical stimuli intervention: CO2 triggered dipole reorientation, reducing their collective dynamics and stimulating a dipole configuration change in the crystal. Dynamic materials under limited thermal noise and high responsiveness enable the fabrication of molecular machines with low energy dissipation and controllable dynamics.
    Permanent Link: https://hdl.handle.net/11104/0337547

     
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.