Number of the records: 1  

The Fim and FhaB adhesins play a crucial role in nasal cavity infection and Bordetella pertussis transmission in a novel mouse catarrhal infection model

  1. 1.
    0563496 - MBÚ 2023 RIV US eng J - Journal Article
    Holubová, Jana - Staněk, Ondřej - Juhasz, Attila - Soumana, I. H. - Makovický, Peter - Šebo, Peter
    The Fim and FhaB adhesins play a crucial role in nasal cavity infection and Bordetella pertussis transmission in a novel mouse catarrhal infection model.
    PLoS Pathogens. Roč. 18, č. 4 (2022), č. článku e1010402. ISSN 1553-7366. E-ISSN 1553-7374
    R&D Projects: GA ČR(CZ) GX19-27630X; GA MŠMT(CZ) LM2018133; GA MŠMT(CZ) LM2018126; GA MŠMT EF18_046/0015861; GA MŠMT ED2.1.00/19.0395; GA MŠMT(CZ) ED1.1.00/02.0109
    Research Infrastructure: EATRIS-CZ III - 90133; CCP II - 90126
    Institutional support: RVO:61388971 ; RVO:68378050
    Keywords : adenylate-cyclase toxin * serum antibody-responses * neutrophil recruitment * confers resistance * baboon model * whole-cell * antigen * vaccine * colonization * protection
    OECD category: Microbiology; Microbiology (UMG-J)
    Impact factor: 6.7, year: 2022
    Method of publishing: Open access
    https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1010402

    Pulmonary infections caused by Bordetella pertussis used to be the prime cause of infant mortality in the pre-vaccine era and mouse models of pertussis pneumonia served in characterization of B. pertussis virulence mechanisms. However, the biologically most relevant catarrhal disease stage and B. pertussis transmission has not been adequately reproduced in adult mice due to limited proliferation of the human-adapted pathogen on murine nasopharyngeal mucosa. We used immunodeficient C57BL/6J MyD88 KO mice to achieve B. pertussis proliferation to human-like high counts of 108 viable bacteria per nasal cavity to elicit rhinosinusitis accompanied by robust shedding and transmission of B. pertussis bacteria to adult co-housed MyD88 KO mice. Experiments with a comprehensive set of B. pertussis mutants revealed that pertussis toxin, adenylate cyclase toxin-hemolysin, the T3SS effector BteA/BopC and several other known virulence factors were dispensable for nasal cavity infection and B. pertussis transmission in the immunocompromised MyD88 KO mice. In contrast, mutants lacking the filamentous hemagglutinin (FhaB) or fimbriae (Fim) adhesins infected the nasal cavity poorly, shed at low levels and failed to productively infect co-housed MyD88 KO or C57BL/6J mice. FhaB and fimbriae thus appear to play a critical role in B. pertussis transmission. The here-described novel murine model of B. pertussis-induced nasal catarrh opens the way to genetic dissection of host mechanisms involved in B. pertussis shedding and to validation of key bacterial transmission factors that ought to be targeted by future pertussis vaccines.
    Permanent Link: https://hdl.handle.net/11104/0335454

     
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.