Number of the records: 1  

How whistler mode hiss waves and the plasmasphere drive the quiet decay of radiation belts electrons following a geomagnetic storm

  1. 1.
    0559271 - ÚFA 2023 RIV GB eng C - Conference Paper (international conference)
    Ripoll, J.-F. - Denton, M. - Loridan, V. - Santolík, Ondřej - Malaspina, D. - Hartley, D. P. - Cunningham, G. S. - Reeves, G. - Thaller, S. - Turner, D. L. - Fennell, J.F. - Drozdov, A.Y. - Villa, J. S. C. - Shprits, Y. Y. - Chu, X. - Hospodarsky, G. - Kurth, W. S. - Kletzing, C. A. - Wygant, J. - Henderson, M. G. - Ukhorskiy, A. Y.
    How whistler mode hiss waves and the plasmasphere drive the quiet decay of radiation belts electrons following a geomagnetic storm.
    Journal of Physics: Conference Series. Vol. 1623. Bristol: IOP Publishing, 2020, č. článku 012005. ISSN 1742-6588. E-ISSN 1742-6596.
    [ASTRONUM 2019. Paris (FR), 01.07.2019-05.07.2019]
    Institutional support: RVO:68378289
    Keywords : wave-particle interactions * radiation belt electrons * whistler-mode hiss waves
    OECD category: Fluids and plasma physics (including surface physics)
    https://iopscience.iop.org/article/10.1088/1742-6596/1623/1/012005/pdf

    We show how an extended period of quiet solar wind conditions contributes to a quiet state of the plasmasphere that expands up to L similar to 5.5, which creates the perfect conditions for wave-particle interactions between the radiation belt electrons and whistler-mode hiss waves. The correlation between the hiss waves and the plasma density is direct with hiss wave power increasing with plasma density, while it was generally assumed that these quantities can be specified independently. Whistler-mode hiss waves pitch angle diffuse and ultimately scatter freshly injected electrons into the atmosphere until the slot region is formed between the inner and outer belt and the outer belt is drastically reduced. In this study, we use and combine Van Allen Probes observations and Fokker-Planck numerical simulations. The Fokker-Planck model uses consistent event-driven pitch angle diffusion coefficients from whistler-mode hiss waves. Observations and simulations allow us to reach a global understanding of the variations in the trapped electron population with time, space, energy, and pitch angle that is based on the existing theory of quasi-linear wave-particle interactions. We show, for instance, the outer beltis pitch-angle homogeneous, which is explained by the event-driven diffusion coefficients that are roughly constant for equatorial pitch angle α0~60°, E100 keV, 3.5<L<Lpp~6. The impact of this work is to bring an improved understanding of the belt evolution based on the integration of high quality and highly temporally and spatially resolved measurements that are integrated in modern computations. We also propose the event-driven method as an accurate method (within ×2) to predict the electron flux decay after storms.
    Permanent Link: https://hdl.handle.net/11104/0333137

     
    FileDownloadSizeCommentaryVersionAccess
    0559271_ Physics Conference Series_Santolík_2020.pdf38 MBPublisher’s postprintrequire
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.