Number of the records: 1  

Auxin requirements for a meristematic state in roots depend on a dual brassinosteroid function

  1. 1.
    0552822 - ÚEB 2022 RIV GB eng J - Journal Article
    Ackerman-Lavert, M. - Fridman, Y. - Matosevich, R. - Khandal, H. - Friedlander-Shani, L. - Vragović, K. - Ben El, R. - Horev, G. - Tarkowská, Danuše - Efroni, I. - Savaldi-Goldstein, S.
    Auxin requirements for a meristematic state in roots depend on a dual brassinosteroid function.
    Current Biology. Roč. 31, č. 20 (2021), s. 4462-4472. ISSN 0960-9822. E-ISSN 1879-0445
    R&D Projects: GA MŠMT(CZ) EF16_019/0000738
    Institutional support: RVO:61389030
    Keywords : auxin * brassinosteroid * differentiation * hormone biosynthesis * inter-tissue communication * meristem maintenance * regeneration * root
    OECD category: Biochemical research methods
    Impact factor: 10.900, year: 2021
    Method of publishing: Open access
    http://doi.org/10.1016/j.cub.2021.07.075

    Root meristem organization is maintained by an interplay between hormone signaling pathways that both interpret and determine their accumulation and distribution. The interacting hormones Brassinosteroids (BR) and auxin control the number of meristematic cells in the Arabidopsis root. BR was reported both to promote auxin signaling input and to repress auxin signaling output. Whether these contradicting molecular outcomes co-occur and what their significance in meristem function is remain unclear. Here, we established a dual effect of BR on auxin, with BR simultaneously promoting auxin biosynthesis and repressing auxin transcriptional output, which is essential for meristem maintenance. Blocking BR-induced auxin synthesis resulted in rapid BR-mediated meristem loss. Conversely, plants with reduced BR levels were resistant to a critical loss of auxin biosynthesis, maintaining their meristem morphology. In agreement, injured root meristems, which rely solely on local auxin synthesis, regenerated when both auxin and BR synthesis were inhibited. Use of BIN2 as a tool to selectively inhibit BR signaling yielded meristems with distinct phenotypes depending on the perturbed tissue: meristem reminiscent either of BR-deficient mutants or of high BR exposure. This enabled mapping of the BR-auxin interaction that maintains the meristem to the outer epidermis and lateral root cap tissues and demonstrated the essentiality of BR signaling in these tissues for meristem response to BR. BR activity in internal tissues however, proved necessary to control BR levels. Together, we demonstrate a basis for inter-tissue coordination and how a critical ratio between these hormones determines the meristematic state.
    Permanent Link: http://hdl.handle.net/11104/0327913

     
    FileDownloadSizeCommentaryVersionAccess
    2021_Ackerman-Lavert_CURRENT BIOLOGY_4462.pdf13.6 MBOtheropen-access
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.