Number of the records: 1  

Studies of laser-plasma interaction physics with low-density targets for direct-drive inertial confinement fusion on the Shenguang III prototype

  1. 1.
    0552074 - FZÚ 2022 RIV IN eng J - Journal Article
    Tikhonchuk, Vladimir - Gong, T. - Jourdain, Noémie - Renner, Oldřich - Condamine, Florian P. - Pan, K. Q. - Nazarov, W. - Hudec, L. - Limpouch, J. - Liska, R. - Krůs, M. - Wang, F. - Yang, D. - Li, S. W. - Li, Z. C. - Guan, Z. Y. - Liu, Y. G. - Xu, T. - Peng, X. S. - Liu, X. M. - Li, Y. L. - Li, J. - Song, T. M. - Yang, J. M. - Jiang, S. E. - Zhang, B. H. - Huo, W. Y. - Ren, G. - Chen, Y. H. - Zheng, W. - Ding, Y. K. - Lan, K. - Weber, Stefan A.
    Studies of laser-plasma interaction physics with low-density targets for direct-drive inertial confinement fusion on the Shenguang III prototype.
    Matter and Radiation at Extremes. Roč. 6, č. 2 (2021), č. článku 025902. ISSN 2468-2047. E-ISSN 2468-080X
    R&D Projects: GA MŠMT EF16_019/0000789; GA MŠMT LQ1606
    Grant - others:OP VVV - ADONIS(XE) CZ.02.1.01/0.0/0.0/16_019/0000789
    Research Infrastructure: ELI Beamlines III - 90141
    Institutional support: RVO:68378271
    Keywords : brillouin-scattering * imprint * raman
    OECD category: Fluids and plasma physics (including surface physics)
    Impact factor: 6.089, year: 2021
    Method of publishing: Open access

    The physics of laser-plasma interaction is studied on the Shenguang III prototype laser facility under conditions relevant to inertial confinement fusion designs. A sub-millimeter-size underdense hot plasma is created by ionization of a low-density plastic foam by four high-energy (3.2 kJ) laser beams. An interaction beam is fired with a delay permitting evaluation of the excitation of parametric instabilities at different stages of plasma evolution. Multiple diagnostics are used for plasma characterization, scattered radiation, and accelerated electrons. The experimental results are analyzed with radiation hydrodynamic simulations that take account of foam ionization and homogenization. The measured level of stimulated Raman scattering is almost one order of magnitude larger than that measured in experiments with gasbags and hohlraums on the same installation, possibly because of a greater plasma density. Notable amplification is achieved in high-intensity speckles, indicating the importance of implementing laser temporal smoothing techniques with a large bandwidth for controlling laser propagation and absorption.
    Permanent Link: http://hdl.handle.net/11104/0327232

     
    FileDownloadSizeCommentaryVersionAccess
    0552074.pdf12.7 MBCC licencePublisher’s postprintopen-access
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.