Number of the records: 1  

Fast Leaps between Millisecond Confinements Govern Ase1 Diffusion along Microtubules

  1. 1.
    0551738 - ÚFE 2022 RIV DE eng J - Journal Article
    Bujak, Lukasz - Holanová, Kristýna - Marín, Antonio García - Henrichs, Verena - Barvík, I. - Braun, Marcus - Lánský, Zdeněk - Piliarik, Marek
    Fast Leaps between Millisecond Confinements Govern Ase1 Diffusion along Microtubules.
    Small Methods. Roč. 5, č. 10 (2021), č. článku 2100370. ISSN 2366-9608. E-ISSN 2366-9608
    R&D Projects: GA MŠMT(CZ) LL1602; GA ČR(CZ) GX19-27477X
    Institutional support: RVO:67985882 ; RVO:86652036
    Keywords : Asel * Coarse-grain model * Interferometric scattering microscopy * Energy landscape
    OECD category: Optics (including laser optics and quantum optics); Biophysics (BTO-N)
    Impact factor: 15.367, year: 2021
    Method of publishing: Open access
    https://doi.org/10.1002/smtd.202100370

    Diffusion is the most fundamental mode of protein translocation within cells. Confined diffusion of proteins along the electrostatic potential constituted by the surface of microtubules, although modeled meticulously in molecular dynamics simulations, has not been experimentally observed in real-time. Here, interferometric scattering microscopy is used to directly visualize the movement of the microtubule-associated protein Ase1 along the microtubule surface at nanometer and microsecond resolution. Millisecond confinements of Ase1 and fast leaps between these positions of dwelling preferentially occurring along the microtubule protofilaments are resolved, revealing Ase1's mode of diffusive translocation along the microtubule's periodic surface. The derived interaction potential closely matches the tubulin-dimer periodicity and the distribution of the electrostatic potential on the microtubule lattice. It is anticipated that mapping the interaction landscapes for different proteins on microtubules, finding plausible energetic barriers of different positioning and heights, can provide valuable insights into regulating the dynamics of essential cytoskeletal processes, such as intracellular cargo trafficking, cell division, and morphogenesis, all of which rely on diffusive translocation of proteins along microtubules
    Permanent Link: http://hdl.handle.net/11104/0326960

     
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.