Number of the records: 1  

Finite-element modeling of vocal fold self-oscillations in interaction with vocal tract: Comparison of incompressible and compressible flow model

  1. 1.
    0551080 - ÚT 2022 RIV CZ eng J - Journal Article
    Hájek, P. - Švancara, Pavel - Horáček, Jaromír - Švec, J. G.
    Finite-element modeling of vocal fold self-oscillations in interaction with vocal tract: Comparison of incompressible and compressible flow model.
    Applied and Computational Mechanics. Roč. 15, č. 2 (2021), s. 133-152. ISSN 1802-680X
    R&D Projects: GA ČR(CZ) GA19-04477S
    Grant - others:GA MŠk(CZ) LM2015042
    Institutional support: RVO:61388998
    Keywords : simulation of phonation * fluid-structure-acoustic interaction * compressible flow * finite element method * biomechanics of voice
    OECD category: Acoustics
    Method of publishing: Open access
    https://www.kme.zcu.cz/acm/acm/article/view/672

    Finite-element modeling of self-sustained vocal fold oscillations during voice production has mostly considered the air as incompressible, due to numerical complexity. This study overcomes this limitation and studies the influence of air compressibility on phonatory pressures, flow and vocal fold vibratory characteristics. A two-dimensional finite-element model is used, which incorporates layered vocal fold structure, vocal fold collisions, large deformations of the vocal fold tissue, morphing the fluid mesh according to the vocal fold motion by the arbitrary Lagrangian-Eulerian approach and vocal tract model of Czech vowel [i:] based on data from magnetic resonance images. Unsteady viscous compressible or incompressible airflow is described by the Navier-Stokes equations. An explicit coupling scheme with separated solvers for structure and fluid domain was used for modeling the fluid-structure-acoustic interaction. Results of the simulations show clear differences in the glottal flow and vocal fold vibration waveforms between the incompressible and compressible fluid flow. These results provide the evidence on the existence of the coupling between the vocal tract acoustics and the glottal flow (Level 1 interactions), as well as between the vocal tract acoustics and the vocal fold vibrations (Level 2 interactions).
    Permanent Link: http://hdl.handle.net/11104/0327043

     
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.