Number of the records: 1  

Solar wind current sheets and deHoffmann-Teller analysis. First results from Solar Orbiter’s DC electric field measurements

  1. 1.
    0550708 - ÚFA 2022 RIV FR eng J - Journal Article
    Steinvall, K. - Khotyaintsev, Y. V. - Cozzani, G. - Vaivads, A. - Yordanova, E. - Eriksson, A.I. - Edberg, N.J.T. - Maksimovic, M. - Bale, S. D. - Chust, T. - Krasnoselskikh, V. - Kretzschmar, M. - Lorfèvre, E. - Plettemeier, D. - Souček, Jan - Steller, M. - Štverák, Štěpán - Vecchio, A. - Horbury, T.S. - O'Brien, H. - Evans, V. - Fedorov, A. - Louarn, P. - Génot, V. - André, N. - Lavraud, B. - Rouillard, A. P. - Owen, C. J.
    Solar wind current sheets and deHoffmann-Teller analysis. First results from Solar Orbiter’s DC electric field measurements.
    Astronomy & Astrophysics. Roč. 656, Dec 14 (2021), č. článku A9. ISSN 0004-6361. E-ISSN 1432-0746
    Institutional support: RVO:68378289 ; RVO:67985815
    Keywords : solar wind * plasmas * magnetic reconnection * methods: data analysis
    OECD category: Fluids and plasma physics (including surface physics); Astronomy (including astrophysics,space science) (ASU-R)
    Impact factor: 6.240, year: 2021
    Method of publishing: Open access
    http://arxiv.org/pdf/2104.03553

    Context. Solar Orbiter was launched on 10 February 2020 with the purpose of investigating solar and heliospheric physics using a payload of instruments designed for both remote and in situ studies. Similar to the recently launched Parker Solar Probe, and unlike earlier missions, Solar Orbiter carries instruments designed to measure low-frequency DC electric fields.
    Aims. In this paper, we assess the quality of the low-frequency DC electric field measured by the Radio and Plasma Waves instrument (RPW) on Solar Orbiter. In particular, we investigate the possibility of using Solar Orbiter’s DC electric and magnetic field data to estimate the solar wind speed.
    Methods. We used a deHoffmann-Teller (HT) analysis, based on measurements of the electric and magnetic fields, to find the velocity of solar wind current sheets, which minimises a single component of the electric field. By comparing the HT velocity to the proton velocity measured by the Proton and Alpha particle Sensor (PAS), we have developed a simple model for the effective antenna length, Leff of the E-field probes. We then used the HT method to estimate the speed of the solar wind.
    Results. Using the HT method, we find that the observed variations in Ey are often in excellent agreement with the variations in the magnetic field. The magnitude of Ey, however, is uncertain due to the fact that the Leff depends on the plasma environment. Here, we derive an empirical model relating Leff to the Debye length, which we can use to improve the estimate of Ey and, consequently, the estimated solar wind speed.
    Conclusions. The low-frequency electric field provided by RPW is of high quality. Using the deHoffmann-Teller analysis, Solar Orbiter’s magnetic and electric field measurements can be used to estimate the solar wind speed when plasma data are unavailable.
    Permanent Link: http://hdl.handle.net/11104/0326014

     
    FileDownloadSizeCommentaryVersionAccess
    0550708_AA_A9_Souček_2021.pdf21.4 MBPublisher’s postprintrequire
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.