Number of the records: 1  

Mining Indole Alkaloid Synthesis Gene Clusters from Genomes of 53 Claviceps Strains Revealed Redundant Gene Copies and an Approximate Evolutionary Hourglass Model

  1. 1.
    0550048 - MBÚ 2022 RIV CH eng J - Journal Article
    Liu, M. - Findlay, W. - Dettman, J. - Wyka, S. A. - Broders, K. - Shoukouhi, P. - Dadej, K. - Kolařík, Miroslav - Basnyat, A. - Menzies, J. G.
    Mining Indole Alkaloid Synthesis Gene Clusters from Genomes of 53 Claviceps Strains Revealed Redundant Gene Copies and an Approximate Evolutionary Hourglass Model.
    Toxins. Roč. 13, č. 11 (2021), č. článku 799. ISSN 2072-6651. E-ISSN 2072-6651
    Institutional support: RVO:61388971
    Keywords : ergot alkaloids * developmental hourglass * purpurea * biosynthesis * endophyte * phylogenies * divergence * diversity * profiles * origins * ergot alkaloids * ergot fungi * gene divergence * gene diversity * indole diterpenes * phylogeny * secondary metabolites
    OECD category: Microbiology
    Impact factor: 5.075, year: 2021
    Method of publishing: Open access
    https://www.mdpi.com/2072-6651/13/11/799

    Ergot fungi (Claviceps spp.) are infamous for producing sclerotia containing a wide spectrum of ergot alkaloids (EA) toxic to humans and animals, making them nefarious villains in the agricultural and food industries, but also treasures for pharmaceuticals. In addition to three classes of EAs, several species also produce paspaline-derived indole diterpenes (IDT) that cause ataxia and staggers in livestock. Furthermore, two other types of alkaloids, i.e., loline (LOL) and peramine (PER), found in Epichloe spp., close relatives of Claviceps, have shown beneficial effects on host plants without evidence of toxicity to mammals. The gene clusters associated with the production of these alkaloids are known. We examined genomes of 53 strains of 19 Claviceps spp. to screen for these genes, aiming to understand the evolutionary patterns of these genes across the genus through phylogenetic and DNA polymorphism analyses. Our results showed (1) varied numbers of eas genes in C. sect. Claviceps and sect. Pusillae, none in sect. Citrinae, six idt/ltm genes in sect. Claviceps (except four in C. cyperi), zero to one partial (idtG) in sect. Pusillae, and four in sect. Citrinae, (2) two to three copies of dmaW, easE, easF, idt/ltmB, itd/ltmQ in sect. Claviceps, (3) frequent gene gains and losses, and (4) an evolutionary hourglass pattern in the intra-specific eas gene diversity and divergence in C. purpurea.
    Permanent Link: http://hdl.handle.net/11104/0325900

     
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.