Number of the records: 1  

Visualizing designer quantum states in stable macrocycle quantum corrals

  1. 1.
    0549131 - FZÚ 2022 RIV GB eng J - Journal Article
    Peng, X. - Mahalingam, H. - Dong, S. - Mutombo, Pingo - Su, J. - Telychko, M. - Song, S. - Lyu, P. - Ng, P.W. - Wu, J. - Jelínek, Pavel - Chi, Ch. - Rodin, A. - Lu, J.
    Visualizing designer quantum states in stable macrocycle quantum corrals.
    Nature Communications. Roč. 12, č. 1 (2021), č. článku 5895. E-ISSN 2041-1723
    R&D Projects: GA MŠMT LM2018110; GA MŠMT(CZ) EF16_019/0000760; GA ČR(CZ) GX20-13692X
    Grant - others:OP VVV - SOLID21(XE) CZ.02.1.01/0.0/0.0/16_019/0000760; AV ČR(CZ) AP1601
    Program: Akademická prémie - Praemium Academiae
    Institutional support: RVO:68378271
    Keywords : nc-AFM * on surface chemistry * quantum macrocycle * DFT * STM
    OECD category: Condensed matter physics (including formerly solid state physics, supercond.)
    Impact factor: 17.694, year: 2021
    Method of publishing: Open access

    Here, we report a bottom-up synthesis of covalently linked organic quantum corrals (OQCs) with atomic precision to induce the formation of topologycontrolled quantum resonance states, arising from a collective interference of scattered electron waves inside the quantum nanocavities. Individual OQCs host a series of atomic orbital-like resonance states whose orbital hybridization into artificial homo-diatomic and hetero-diatomic molecular-like resonance states can be constructed in Cassini oval-shaped OQCs with desired topologies corroborated by joint ab initio and analytic calculations. Our studies open up a new avenue to fabricate covalently linked large-sized OQCs with atomic precision to engineer desired quantum states with high chemical robustness and digital fidelity for future practical applications.
    Permanent Link: http://hdl.handle.net/11104/0325152

     
    FileDownloadSizeCommentaryVersionAccess
    0549131.pdf13.8 MBCC LicencePublisher’s postprintopen-access
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.