Number of the records: 1  

Ethyl chloroformate mediated gas chromatographic-mass spectrometric biomonitoring of acidic biomarkers of occupational exposure and endogenous metabolites in human urine

  1. 1.
    0545721 - BC 2022 RIV NL eng J - Journal Article
    Řimnáčová, Lucie - Moos, Martin - Opekar, Stanislav - Vodrážka, Petr - Pejchal, V. - Mráz, J. - Šimek, Petr
    Ethyl chloroformate mediated gas chromatographic-mass spectrometric biomonitoring of acidic biomarkers of occupational exposure and endogenous metabolites in human urine.
    Journal of Chromatography A. Roč. 1656, OCT 25 (2021), č. článku 462547. ISSN 0021-9673. E-ISSN 1873-3778
    R&D Projects: GA ČR(CZ) GA17-22276S
    Institutional support: RVO:60077344
    Keywords : biomarker of occupational exposure * xenometabolite * urine
    OECD category: Analytical chemistry
    Impact factor: 4.601, year: 2021
    Method of publishing: Limited access
    https://www.sciencedirect.com/science/article/pii/S0021967321006713?via%3Dihub

    Numerous industrial organic pollutants such as aromates, alkoxyalcohols, other organic solvents and monomers are absorbed, metabolized, and finally excreted in urine mostly as carboxylic acids that are determined as biomarkers of exposure. For a number of these xenometabolites, biological limits (lev- els of biomarkers in biological material) have been established to prevent damage to human health. Till now, most of the analytical procedures used have been optimized for one or a few analytes. Here, we report a more comprehensive approach enabling rapid GC-MS screening of sixteen acidic biomarkers in urine that are metabolized in the human body from several important industrial chemicals, benzene, toluene, styrene, xylenes, alkoxyalcohols, carbon disulfide, furfural and N,N -dimethylformamide. The new method involves immediate in situ derivatization –liquid liquid microextraction of urine by an ethyl chloroformate-ethanol-chloroform-pyridine medium and GC-MS analysis of the derivatized analytes in the lower organic phase. The xenometabolite set represents diverse chemical structures and some of hip- puric and mercapturic acids also provided unusual derivatives that were unambiguously elucidated by means of new ethyl chloroformates labeled with stable isotopes and by synthesis of the missing refer- ence standards. In the next step, an automated routine was developed for GC-MS/MS analysis using a MetaboAuto®sample preparation workstation and the new method was validated for fourteen metabo- lites over the relevant concentration range of each analyte in the spiked pooled human urine. It shows good linearity (R 2 ≥0.982), accuracy (from 85% to 120%), precision (from 0.7% to 20%) and recovery (from 89% to 120%). The method performance was further successfully proved by GC-MS/MS analysis of the certified IP45 and RM6009 reference urines. Moreover, we show that the new method opens up the possibility for biomonitoring of combined and cumulative occupational exposures as well as for urinary metabolite profiling of persons exposed to harmful industrial chemicals.
    Permanent Link: http://hdl.handle.net/11104/0326472

     
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.