Number of the records: 1  

The adhesion of plasma nanocoatings controls the shear properties of GF/polyester composite

  1. 1.
    0544478 - ÚPT 2022 RIV CH eng J - Journal Article
    Plichta, Tomáš - Širjovová, V. - Zvonek, M. - Kalinka, G. - Čech, V.
    The adhesion of plasma nanocoatings controls the shear properties of GF/polyester composite.
    Polymers. Roč. 13, č. 4 (2021), č. článku 593. E-ISSN 2073-4360
    Institutional support: RVO:68081731
    Keywords : plasma nanocoatings * glass fibre * polymer composite * short-beam strength * interfacial shear strength * work of adhesion * mechanical properties
    OECD category: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics
    Impact factor: 4.967, year: 2021
    Method of publishing: Open access
    https://www.mdpi.com/2073-4360/13/4/593/htm

    High-performance fibre-reinforced polymer composites are important construction materials based not only on the specific properties of the reinforcing fibres and the flexible polymer matrix but also on the compatible properties of the composite interphase. First, oxygen-free (a-CSi:H) and oxygen-binding (a-CSiO:H) plasma nanocoatings of different mechanical and tribological properties were deposited on planar silicon dioxide substrates that closely mimic E-glass. The nanoscratch test was used to characterize the nanocoating adhesion expressed in terms of critical normal load and work of adhesion. Next, the same nanocoatings were deposited on E-glass fibres, which were used as reinforcements in the polyester composite to affect its interphase properties. The shear properties of the polymer composite were characterized by macro- and micromechanical tests, namely a short beam shear test to determine the short-beam strength and a single fibre push-out test to determine the interfacial shear strength. The results of the polymer composites showed a strong correlation between the short-beam strength and the interfacial shear strength, proving that both tests are sensitive to changes in fibre-matrix adhesion due to different surface modifications of glass fibres (GF). Finally, a strong correlation between the shear properties of the GF/polyester composite and the adhesion of the plasma nanocoating expressed through the work of adhesion was demonstrated. Thus, increasing the work of adhesion of plasma nanocoatings from 0.8 to 1.5 mJ center dot m(-2) increased the short-beam strength from 23.1 to 45.2 MPa. The results confirmed that the work of adhesion is a more suitable parameter in characterising the level of nanocoating adhesion in comparison with the critical normal load.
    Permanent Link: http://hdl.handle.net/11104/0325280

     
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.