Number of the records: 1  

Influence of processing conditions on the microstructure and sliding wear of a promising Fe-based coating deposited by HVAF

  1. 1.
    0542793 - ÚFP 2022 RIV CH eng J - Journal Article
    Mahade, S. - Aranke, O. - Björklund, S. - Dizdar, S. - Awe, S. - Mušálek, Radek - Lukáč, František - Joshi, S.
    Influence of processing conditions on the microstructure and sliding wear of a promising Fe-based coating deposited by HVAF.
    Surface and Coatings Technology. Roč. 409, March (2021), č. článku 126953. ISSN 0257-8972
    Institutional support: RVO:61389021
    Keywords : Ball-on-disc test * Friction, wear, FeSP586 * High velocity air fuel (HVAF) * High velocity oxy fuel (HVOF)
    OECD category: Materials engineering
    Impact factor: 4.158, year: 2020
    Method of publishing: Limited access
    https://www.sciencedirect.com/science/article/pii/S0257897221001262?via%3Dihub

    Thermal spray is a versatile and cost-effective process to deposit wear and corrosion resistant coatings. In this work, a relatively new ‘Fe-based’ chemistry comprising boride and carbides, is explored as a ‘greener’ alternative to the relatively expensive and carcinogenic Co-based coatings to mitigate wear. The emergent thermal spray process of high-velocity air-fuel (HVAF) spraying was chosen to deposit the Fe-based coatings, with the high-velocity oxy-fuel (HVOF) also being employed solely for the purpose of preliminary comparison. Detailed characterization of the HVOF and HVAF sprayed Fe-based coatings was carried out. Microstructure, porosity, hardness and phase analysis results demonstrate the influence of processing conditions, where specific spray conditions yielded minimal undeformed particulates content, high hardness, low porosity and feedstock phase retention. Differences in microstructural features of the as-deposited coatings in relation to their processing conditions are discussed in detail. The coatings were subjected to ball-on-disc tribometry tests at different load conditions and their friction and wear performance were evaluated. The coefficient of friction results of investigated coatings concurred with their respective microstructural features. Post-mortem of the worn coating surface, the mating alumina ball surface and wear debris was performed using SEM/EDS analysis to understand the associated wear mechanisms and material transfer. This work provides new insights on identifying appropriate HVAF processing conditions to achieve acceptable microstructural features and phases in Fe-based coatings for improved wear performance.
    Permanent Link: http://hdl.handle.net/11104/0320139

     
     
Number of the records: 1