Number of the records: 1  

New results on multi-level aggregation

  1. 1.
    0540790 - MÚ 2022 RIV NL eng J - Journal Article
    Bienkowski, M. - Böhm, M. - Byrka, J. - Chrobak, M. - Dürr, Ch. - Folwarczný, Lukáš - Jeż, Ł. - Sgall, J. - Thang, N. K. - Veselý, P.
    New results on multi-level aggregation.
    Theoretical Computer Science. Roč. 861, March 12 (2021), s. 133-143. ISSN 0304-3975. E-ISSN 1879-2294
    R&D Projects: GA ČR(CZ) GX19-27871X
    Institutional support: RVO:67985840
    Keywords : algorithmic aspects of networks * online algorithms * scheduling and resource allocation
    OECD category: Pure mathematics
    Impact factor: 1.002, year: 2021
    Method of publishing: Limited access
    https://doi.org/10.1016/j.tcs.2021.02.016

    In the Multi-Level Aggregation Problem (MLAP ), requests for service arrive at the nodes of an edge-weighted rooted tree T. Each service is represented by a subtree X of T that contains its root. This subtree X serves all requests that are pending in the nodes of X, and the cost of this service is equal to the total weight of X. Each request also incurs a waiting cost between its arrival and service time. The objective is to minimize the total waiting cost of all requests plus the total cost of all service subtrees. The currently best online algorithms for the MLAP achieve competitive ratios polynomial in the tree depth, while the best lower bound is only 3.618. In this paper, we report some progress towards closing this gap, by improving this lower bound and providing several tight bounds for restricted variants of MLAP: (1) We first study a Single-Phase variant of MLAP where all requests are released at the beginning and expire at some unknown time θ, for which we provide an online algorithm with optimal competitive ratio of 4. (2) We prove a lower bound of 4 on the competitive ratio for MLAP, even when the tree is a path. We complement this with a matching upper bound for the deadline variant of MLAP on paths. Additionally, we provide two results for the offline case: (3) We prove that the Single-Phase variant can be solved optimally in polynomial time, and (4) we give a simple 2-approximation algorithm for offline MLAP with deadlines.
    Permanent Link: http://hdl.handle.net/11104/0318386

     
    FileDownloadSizeCommentaryVersionAccess
    Folwarczny.pdf2365.3 KBPublisher’s postprintrequire
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.