Number of the records: 1  

Characterizing the uppermost 100 m structure of the San Jacinto fault zone southeast of Anza, California, through joint analysis of geological, topographic, seismic and resistivity data

  1. 1.
    0533347 - ÚSMH 2021 RIV GB eng J - Journal Article
    Share, P.E. - Tábořík, Petr - Štěpančíková, Petra - Stemberk, Jakub - Rockwell, Thomas - Wade, A. - Arrowsmith, J.R. - Donnellan, A. - Vernon, F.L. - Ben-Zion, Y.
    Characterizing the uppermost 100 m structure of the San Jacinto fault zone southeast of Anza, California, through joint analysis of geological, topographic, seismic and resistivity data.
    Geophysical Journal International. Roč. 222, č. 2 (2020), s. 781-794. ISSN 0956-540X. E-ISSN 1365-246X
    Institutional support: RVO:67985891
    Keywords : Structure of the Earth * Electrical resistivity tomography (ERT) * Image processing * Earthquake hazards * Seismic tomography * Fractures * Faults * High strain deformation zones
    OECD category: Geology
    Impact factor: 2.934, year: 2020
    Method of publishing: Limited access
    https://academic-oup-com.ezproxy.lib.cas.cz/gji/article-abstract/222/2/781/5834548?redirectedFrom=fulltext

    We present results from complementary geological, topographic, seismic and electrical resistivity surveys at the Sagebrush Flat (SGB) site along the Clark fault (CF) strand of the San Jacinto fault zone trifurcation area southeast of Anza, California. Joint interpretation of these data sets, each with unique spatiotemporal sensitivities, allow us to better characterize the shallow (<100 m) fault zone at this structurally complex site. Geological mapping at the surface shows the CF has three main subparallel strands within a <100 m zone with varying degrees of rock damage. These strands intersect units of banded gneiss and tonalite, and various sedimentary units. Near the surface, the weathered but more intact tonalite and gneiss to the southwest have relatively high V-P. The low-lying flat sedimentary basins around the two southwestern-most CF strands and elevated damaged gneiss to the northeast have lowest V-P <500 m s(-1). The high relief of the northeast gneiss unit may in part be explained by its extensive damage and inferred increased relative rock uplift. Resistivity imaging shows the unconsolidated dry basin sediments (maximum >1300 Ohm.m) contrasted against the compacted fine-grained (potentially wet) materials within the CF core and the Bautista Formation (minimum <40 Ohm.m), which is slightly elevated above the flat basins. The inverse relationship between VP (increases) and resistivity (decreases) in the uppermost similar to 15 m can be characterized as log-log linear with slopes of -2.6 to -4. At depths >30 m, the velocity heterogeneity near the surface merges into larger-scale structures that are generally slower on the northeast side of the CF core compared to the southwest side (as much as similar to 40 per cent reduction in average V-P). A previous study revealed a 20-37 per cent variability in peak ground velocities across the SGB site from local earthquakes. The upper end of that range is associated with the near-surface unconsolidated sedimentary basins and northeast damaged gneiss unit. Preliminary analysis of time-dependent topography mostly shows effects of changing vegetation and anthropogenic activity.
    Permanent Link: http://hdl.handle.net/11104/0312689

     
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.