Number of the records: 1  

Kombinace prediktorů v odhadování parametrů

  1. 1.
    0532023 - ÚTIA 2021 CZ cze V - Research Report
    Podlesna, Yana - Kárný, Miroslav
    Kombinace prediktorů v odhadování parametrů.
    [Mixing of Predictors in Parameter Estimation.]
    Praha: ÚTIA AV ČR, 2020. 32 s. Research Report, 2385.
    R&D Projects: GA MŠMT(CZ) LTC18075
    Institutional support: RVO:67985556
    Keywords : curse of dimensionality * Bayesian estimation * prediction * Markov decision process * decision making
    Subject RIV: BC - Control Systems Theory
    Result website:
    http://library.utia.cas.cz/separaty/2020/AS/karny-0532023.pdf

    Tato bakalářská práce se zabývá návrhem metody k řešení prokletí rozměrnosti vznikající v kvantitativním modelování složitých vzájemně propojených systémů. Jedná se o předpovídací modely, které jsou založené na diskrétním markovském rozhodovacím procesu. Předpovídání je založeno na odhadu parametrů modelu pomocí bayesovské statistiky. Tato práce obsahuje návod na zmenšení rozměrnosti dat, potřebných k předpovídání v systémech s velkým počtem stavů a akcí. Místo odhadu prediktoru závislého na všech parametrech metoda předpokládá užití několika prediktorů, které vznikají odhadováním parametrických modelů, předpokládajících závislost na různých regresorech. Vlastnosti chování navržené metody jsou ilustrovány simulačními experimenty.

    This bachelor thesis deals with the design of the method for solving the curse of dimensionality arising in the quantitative modeling of complex interconnected systems. The employed predictive models are based on a discrete Markov process. Prediction is based on estimating model parameters using Bayesian statistics. This work contains method for reducing the amount of data needed for prediction in systems with a large number of occurring states and actions. Instead of estimating a predictor dependent on all parameters, the method assumes the use of several predictors, which arise from estimating parametric models based on dependences on different regressors. The behavioral properties of the proposed method are illustrated by simulation experiments.

    Permanent Link: http://hdl.handle.net/11104/0310636

     
    FileDownloadSizeCommentaryVersionAccess
    0532023.pdf01.4 MBOtheropen-access
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.