Number of the records: 1  

Interactions of polar lipids with cholesteryl ester multilayers elucidate tear film lipid layer structure

  1. 1.
    0531105 - ÚFCH JH 2021 RIV US eng J - Journal Article
    Paananen, R. O. - Viitaja, T. - Olžyńska, Agnieszka - Ekholm, F. S. - Moilanen, J. - Cwiklik, Lukasz
    Interactions of polar lipids with cholesteryl ester multilayers elucidate tear film lipid layer structure.
    Ocular Surface. Roč. 18, č. 4 (2020), s. 545-553. ISSN 1542-0124
    R&D Projects: GA ČR(CZ) GA18-26751S
    Institutional support: RVO:61388955
    Keywords : cholesteryl ester * dry eye * evaporation
    Subject RIV: CF - Physical ; Theoretical Chemistry
    OBOR OECD: Physical chemistry
    Impact factor: 12.336, year: 2019
    http://hdl.handle.net/11104/0309842

    Purpose: The tear film lipid layer (TFLL) covers the tear film, stabilizing it and providing a protective barrier against the environment. The TFLL is divided into polar and non-polar sublayers, but the interplay between lipid classes in these sublayers and the structure-function relationship of the TFLL remains poorly characterized. This study aims to provide insight into TFLL function by elucidating the interactions between polar and non-polar TFLL lipids at the molecular level. Methods: Mixed films of polar O-acyl-ω-hydroxy fatty acids (OAHFA) or phospholipids and non-polar cholesteryl esters (CE) were used as a model of the TFLL. The organization of the films was studied by using a combination of Brewster angle and fluorescence microscopy in a Langmuir trough system. In addition, the evaporation resistance of the lipid films was evaluated. Results: Phospholipids and OAHFAs induced the formation of a stable multilamellar CE film. The formation of this film was driven by the interdigitation of acyl chains between the monolayer of polar lipids and the CE multilayer lamellae. Surprisingly, the multilayer structure was destabilized by both low and high concentrations of polar lipids. In addition, the CE multilayer was no more effective in resisting the evaporation of water than a polar lipid monolayer. Conclusions: Formation of multilamellar films by major tear film lipids suggest that the TFLL may have a similar structure. Moreover, in contrast to the current understanding, polar TFLL lipids may not mainly act by stabilizing the non-polar TFLL sublayer, but through a direct evaporation resistant effect. © 2020 The Authors
    Permanent Link: http://hdl.handle.net/11104/0309842
    FileDownloadSizeCommentaryVersionAccess
    0531105.pdf03.5 MBopen accessPublisher’s postprintopen-access
     
Number of the records: 1