Number of the records: 1  

Laser ablation of silicon monoxide and titanium monoxide inliquid: formation of mixed colloidal dispersion with photocatalytic activity.

  1. 1.
    0524940 - ÚCHP 2021 RIV GB eng C - Conference Paper (international conference)
    Vála, L. - Vavruňková, V. - Jandová, Věra - Křenek, T.
    Laser ablation of silicon monoxide and titanium monoxide inliquid: formation of mixed colloidal dispersion with photocatalytic activity.
    Journal of Physics: Conference Series. Vol. 1527. Bristol: IOP Publishing, 2020, č. článku 012046. ISSN 1742-6588.
    [International Conference on Rheology and Modeling of Materials (ic-rmm4) /4./. Miskolcs (HU), 07.10.2019-11.10.2019]
    Institutional support: RVO:67985858
    Keywords : titanium monoxide * silicon monoxide * laser ablation in liquid * photocatalysis * colloids
    OECD category: Inorganic and nuclear chemistry
    Result website:
    https://iopscience.iop.org/article/10.1088/1742-6596/1527/1/012046DOI: https://doi.org/10.1088/1742-6596/1527/1/012046

    Silica–titania mixed oxides and composites have been extensively studied, whereas to the titanium monoxide (TiO) –silicon monoxide (SiO) counterparts has been devoted very little attention. Laser ablation of SiO and TiO in liquids is in according with literature completely unexplored. Here we report on Nd:YAG pulse laser ablation of SiO and TiO in ethanol which allows generation of SiO- and TiO-based nanoparticles and their agglomerates. Mixed SiO-TiO colloid has been prepared by simple mixing of ablatively prepared individual colloids in 1:1 volume ratio. Measurement of size distribution by Dynamic Light Scattering (DLS) determines sizes of 24.85 nm and 262.3 nm for SiO colloid, 494.8 nm for TiO colloid and 35.2 nm and 397.5 nm for mixed colloid. Zeta potential values suggest incipient instability for all measured systems. Morphology of the particles captured on Ta substrate by evaporation of ethanol was studied using Scanning Electron Microscopy (SEM). Roundshaped, oval, and sheet-like particles and their agglomerates have been observed. Raman spectroscopy of the mixed SiO-TiO colloid revealed multiphase structure consisting of anatase and/or rutile, crystalline and amorphous silicon and silica and crystalline and amorphous titanium silicide TiSi2. Formation of TiSi2 demonstrates unexpected low temperature disproportionation of SiO and TiO-based species and mutual reducing interactions. Catalytic activity of individual SiO and TiO colloids and of their mixture has been tested in terms of methylene blue (MB) degradation under the daylight. TiO-SiO mixture exhibits higher solar-light catalytic activity compared to individual colloids which could by explain by the presence of highly photocatalytic TiSi2. These results represent potential of SiO and TiO reducing interactions which are favorable for generation of photocatalytic materials for water remediation.
    Permanent Link: http://hdl.handle.net/11104/0309517


     
     
    FileDownloadSizeCommentaryVersionAccess
    Vála_2020_J._Phys.__Conf._Ser._1527_012046.pdf11.1 MBPublisher’s postprintopen-access
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.