Number of the records: 1  

The generality of the GUGA MRCI approach in COLUMBUS for treating complex quantum chemistry

  1. 1.
    0524012 - ÚOCHB 2021 RIV US eng J - Journal Article
    Lischka, H. - Shepard, R. - Müller, T. - Szalay, P. G. - Pitzer, R. M. - Aquino, A. J. A. - do Nascimento, M. M. A. - Barbatti, M. - Belcher, L. T. - Blaudeau, J. P. - Borges, I. - Brozell, S. R. - Carter, E. A. - Das, A. - Gidofalvi, G. - González, L. - Hase, W. L. - Kedziora, G. - Kertesz, M. - Kossoski, F. - Machado, F. B. C. - Matsika, S. - do Monte, S. A. - Nachtigallová, Dana - Nieman, R. - Oppel, M. - Parish, C. A. - Plasser, F. - Spada, R. F. K. - Stahlberg, E. A. - Ventura, E. - Yarkony, D. R. - Zhang, Z.
    The generality of the GUGA MRCI approach in COLUMBUS for treating complex quantum chemistry.
    Journal of Chemical Physics. Roč. 152, č. 13 (2020), č. článku 134110. ISSN 0021-9606. E-ISSN 1089-7690
    R&D Projects: GA ČR(CZ) GA18-09914S
    Institutional support: RVO:61388963
    Keywords : Gaussian basis sets * correlated molecular calculations * size-extensive modification
    OECD category: Physical chemistry
    Impact factor: 3.488, year: 2020
    Method of publishing: Limited access
    https://aip.scitation.org/doi/10.1063/1.5144267

    The core part of the program system COLUMBUS allows highly efficient calculations using variational multireference (MR) methods in the framework of configuration interaction with single and double excitations (MR-CISD) and averaged quadratic coupled-cluster calculations (MR-AQCC), based on uncontracted sets of configurations and the graphical unitary group approach (GUGA). The availability of analytic MR-CISD and MR-AQCC energy gradients and analytic nonadiabatic couplings for MR-CISD enables exciting applications including, e.g., investigations of pi-conjugated biradicaloid compounds, calculations of multitudes of excited states, development of diabatization procedures, and furnishing the electronic structure information for on-the-fly surface nonadiabatic dynamics. With fully variational uncontracted spin-orbit MRCI, COLUMBUS provides a unique possibility of performing high-level calculations on compounds containing heavy atoms up to lanthanides and actinides. Crucial for carrying out all of these calculations effectively is the availability of an efficient parallel code for the CI step. Configuration spaces of several billion in size now can be treated quite routinely on standard parallel computer clusters. Emerging developments in COLUMBUS, including the all configuration mean energy multiconfiguration self-consistent field method and the graphically contracted function method, promise to allow practically unlimited configuration space dimensions. Spin density based on the GUGA approach, analytic spin-orbit energy gradients, possibilities for local electron correlation MR calculations, development of general interfaces for nonadiabatic dynamics, and MRCI linear vibronic coupling models conclude this overview.
    Permanent Link: http://hdl.handle.net/11104/0308333

     
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.