Number of the records: 1  

Coarse grained models of graphene and graphene oxide for usein aqueous solution.

  1. 1.
    0522212 - ÚCHP 2021 RIV GB eng J - Journal Article
    Williams, Ch.D. - Lísal, Martin
    Coarse grained models of graphene and graphene oxide for usein aqueous solution.
    2D Materials. Roč. 7, č. 2 (2020), č. článku 025025. ISSN 2053-1583. E-ISSN 2053-1583
    Grant - others:EPSRC(GB) EP/R033366/1
    Institutional support: RVO:67985858
    Keywords : molecular simulation * graphene oxide * coarse graining
    OECD category: Physical chemistry
    Impact factor: 7.103, year: 2020
    Method of publishing: Open access
    https://iopscience.iop.org/article/10.1088/2053-1583/ab6f0c

    Obtaining stable aqueous dispersions of graphene-based materials is a major obstacle in the development and widespread use of graphene in nanotechnology. The efficacy of atomistic
    simulations in obtaining a molecular-level insight into aggregation and exfoliation of graphene/ graphene oxide (GO) is hindered by length and time scale limitations. In this work, we developed coarse-grained (CG) models of graphene/GO sheets, compatible with the polarizable Martini water model, using molecular dynamics, iterative Boltzmann inversion and umbrella sampling simulations. The new CG models accurately reproduce graphene/GO–water radial distribution functions and sheet–sheet aggregation free energies for small graphene (−316 kJ mol−1) and GO (−108 kJ mol−1) reference sheets. Deprotonation of carboxylic acid functionalities stabilize the exfoliated state by electrostatic repulsion, providing they are present at sufficiently high surface concentration. The simulations also highlight the pivotal role played by entropy in controlling the propensity for aggregation or exfoliation. The CG models improve the computational efficiency of simulations by an order of magnitude and the framework presented is transferrable to sheets of different sizes and oxygen contents. They can now be used to provide fundamental physical insights into the stability of dispersions and controlled self-assembly, underpinning the computational
    design of graphene-containing nanomaterials.
    Permanent Link: http://hdl.handle.net/11104/0308288

     
    FileDownloadSizeCommentaryVersionAccess
    0522212.pdf12.2 MBPublisher’s postprintopen-access
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.