Number of the records: 1  

Analysis and discussion of two fluid modelling of pipe flow of fully suspended slurry

  1. 1.
    0521317 - ÚH 2021 RIV CH eng J - Journal Article
    Messa, G. V. - Matoušek, Václav
    Analysis and discussion of two fluid modelling of pipe flow of fully suspended slurry.
    Powder Technology. Roč. 360, č. 1 (2020), s. 747-768. ISSN 0032-5910. E-ISSN 1873-328X
    Institutional support: RVO:67985874
    Keywords : hydraulic conveying * slurry flows * two fluid model * sensitivity analysis * validation
    OECD category: Fluids and plasma physics (including surface physics)
    Impact factor: 5.134, year: 2020
    Method of publishing: Limited access
    https://www.sciencedirect.com/science/article/pii/S0032591019307429?via%3Dihub

    Thanks to the advancements in computer power and capability of Computational Fluid Dynamics codes, the amount of research work on the numerical simulation of slurry flows in pipelines has increased exponentially in few years, opening the way to the use of this approach for engineering purposes. The Two Fluid Model (TFM), in which both phases are interpreted as interpenetrating continua and solved in the Eulerian, cell-based framework, allows the best compromise considering the engineering requirements of computational efficiency, applicability, and accuracy. However, the solution of this model is affected by several numerical and modelling factors, and, even if good agreement is achieved between simulation results and experimental measurements, it might be difficult to trust the predictions outside the validation conditions, thereby limiting the engineering potential of the two-fluid approach. The fully-suspended slurry flow in horizontal pipes was numerically simulated using the TFM recently developed by one of the authors of this paper, and the computational results were compared to experimental data reported in the literature. It has been clearly demonstrated that, even in this simple geometry, many possible sources of inaccuracy and uncertainty come into play. Whilst assessing their role, best practice guidelines and consistency checks were proposed to improve the accuracy of the estimates and increase the reliability of the TFM solution. Afterwards, pipe size-up scaling tests and a careful specification of the applicability conditions provided further confidence to the use of the TFM as a tool for engineering design.
    Permanent Link: http://hdl.handle.net/11104/0305954

     
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.