Number of the records: 1  

Effect of stimulated erythropoiesis on liver SMAD signaling pathway in iron-overloaded and iron-deficient mice

  1. 1.
    0520661 - BTÚ 2020 RIV US eng J - Journal Article
    Frýdlová, J. - Rogalsky, D.W. - Truksa, Jaroslav - Nečas, E. - Vokurka, M. - Krijt, J.
    Effect of stimulated erythropoiesis on liver SMAD signaling pathway in iron-overloaded and iron-deficient mice.
    PLoS ONE. Roč. 14, č. 4 (2019), č. článku e0215028. ISSN 1932-6203. E-ISSN 1932-6203
    R&D Projects: GA ČR(CZ) GA18-13103S; GA MŠMT(CZ) ED1.1.00/02.0109
    Institutional support: RVO:86652036
    Keywords : transferrin receptor 2 * identification * anemia
    OECD category: Biochemistry and molecular biology
    Impact factor: 2.740, year: 2019
    Method of publishing: Open access
    https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0215028

    Expression of hepcidin, the hormone regulating iron homeostasis, is increased by iron overload and decreased by accelerated erythropoiesis or iron deficiency. The purpose of the study was to examine the effect of these stimuli, either alone or in combination, on the main signaling pathway controlling hepcidin biosynthesis in the liver, and on the expression of splenic modulators of hepcidin biosynthesis. Liver phosphorylated SMAD 1 and 5 proteins were determined by immunoblotting in male mice treated with iron dextran, kept on an iron deficient diet, or administered recombinant erythropoietin for four consecutive days. Administration of iron increased liver phosphorylated SMAD protein content and hepcidin mRNA content, subsequent administration of erythropoietin significantly decreased both the iron-induced phosphorylated SMAD proteins and hepcidin mRNA. These results are in agreement with the recent observation that erythroferrone binds and inactivates the BMP6 protein. Administration of erythropoietin substantially increased the amount of erythroferrone and transferrin receptor 2 proteins in the spleen, pretreatment with iron did not influence the erythropoietin-induced content of these proteins. Erythropoietin-treated iron-deficient mice displayed smaller spleen size in comparison with erythropoietin-treated mice kept on a control diet. While the erythropoietin-induced increase in splenic erythroferrone protein content was not significantly affected by iron deficiency, the content of transferrin receptor 2 protein was lower in the spleens of erythropoietin-treated mice kept on iron-deficient diet, suggesting posttranscriptional regulation of transferrin receptor 2. Interestingly, iron deficiency and erythropoietin administration had additive effect on hepcidin gene downregulation in the liver. In mice subjected both to iron deficiency and erythropoietin administration, the decrease of hepcidin expression was much more pronounced than the decrease in phosphorylated SMAD protein content or the decrease in the expression of the SMAD target genes Id1 and Smad7. These results suggest the existence of another, SMAD-independent pathway of hepcidin gene downregulation.
    Permanent Link: http://hdl.handle.net/11104/0305360

     
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.